International Journal of Computer Science & Network Security
/
v.22
no.6
/
pp.83-90
/
2022
Traditional Cloud Computing would be unable to safely host IoT data due to its high latency as the number of IoT sensors and physical devices accommodated on the Internet grows by the day. Because of the difficulty of processing all IoT large data on Cloud facilities, there hasn't been enough research done on automating the security of all components in the IoT-Cloud ecosystem that deal with big data and real-time jobs. It's difficult, for example, to build an automatic, secure data transfer from the IoT layer to the cloud layer, which incorporates a large number of scattered devices. Addressing this issue this article presents an intelligent algorithm that deals with enhancing security aspects in IoT cloud ecosystem using butterfly optimization algorithm.
Proceedings of the Korean Society of Computer Information Conference
/
2016.07a
/
pp.73-74
/
2016
IoT 데이터는 비정형 데이터로 가공되고 분석하였을 때 비로소 가치를 갖기에 전 세계적으로 빅데이터 기술에 관심이 집중되고 있다. IoT 데이터 중 많은 부분을 차치하는 센서 데이터는 수집이 용이하고 활용범위가 넓기 때문에 여러 분야에서 사용되고 있다. 하지만 센서가 정상적으로 작동하지 못한 경우에는 실제와는 다른 값인 이상치를 포함하여 왜곡된 결과가 도출되어 활용할 수 없는 경우가 생긴다. 따라서 본 논문에서는 정확한 결과를 도출하기 위하여 수집된 원자료의 데이터를 분석하기 전에 이상치 탐지 및 제거를 하고자 한다. 또한 점점 늘어나고 있는 대용량 데이터를 신속하게 처리하기 위하여 메모리 접근방식인 스파크를 사용한 분산처리환경에서 이상치 탐지 및 제거하는 것을 제안한다. 맵리듀스 기반의 이상치 탐지 및 제거는 총 4단계로 나누어 구현하였으며 제안한 기법의 성능 평가를 위해 총 3가지 환경에서 비교하여 실험하였다. 실험을 통해 데이터의 용량이 커질수록 분산처리환경에서 스파크를 사용하여 처리하는 방식이 가장 빠를 것 이라는 결과를 얻었다.
One of the major issues in big data processing is extracting keywords from internet and using them to process the necessary information. Most of the proposed keyword extraction algorithms extract keywords using search function of a large portal site. In addition, these methods extract keywords based on already posted or created documents or fixed contents. In this paper, we propose a KAES(Keyword Advertisement Extraction System) system that helps the potential shopping keyword marketing to extract issue keywords and related keywords based on dynamic instant messages such as various issues, interests, comments posted on SNS. The KAES system makes a list of specific accounts to extract keywords and related keywords that have most frequency in the SNS.
As the importance of the use and analysis of big data is emerging, there is a growing interest in natural language processing techniques for unstructured data such as news articles and comments. Particularly, as the collection of big data becomes possible, data mining techniques capable of pre-processing and analyzing data are emerging. In this case study with a telecom company, we propose a methodology how to formalize unstructured data using text mining. The domain is determined as equipment failure and the data is about 2.2 million equipment check ledger data. Data on equipment failures by 800,000 per year is accumulated in the equipment check ledger. The equipment check ledger coexist with both formal and unstructured data. Although formal data can be easily used for analysis, unstructured data is difficult to be used immediately for analysis. However, in unstructured data, there is a high possibility that important information. Because it can be contained that is not written in a formal. Therefore, in this study, we study to develop digital transformation method for unstructured data in equipment check ledger.
Journal of the Korean Data and Information Science Society
/
v.26
no.3
/
pp.611-618
/
2015
By Wikipedia, big data is a broad term for data sets so large or complex that traditional data processing applications are inadequate. Data mining is the computational process of discovering patterns in huge data sets involving methods at the intersection of association rule, decision tree, clustering, artificial intelligence, machine learning. Association rule is a well researched method for discovering interesting relationships between itemsets in huge databases and has been applied in various fields. There are positive, negative, and inverse association rules according to the direction of association. If you want to set the evaluation criteria of association rule, it may be desirable to consider three types of association rules at the same time. To this end, we proposed a balanced comparative confidence considering sensitivity, specificity, false positive, and false negative, checked the conditions for association threshold by Piatetsky-Shapiro, and compared it with comparative confidence and inversely comparative confidence through a few experiments.
Journal of the Korea Institute of Information and Communication Engineering
/
v.23
no.11
/
pp.1337-1342
/
2019
Medical institutions face the challenge of securing competitiveness among medical institutions due to the rapid spread of ICT convergence, and managing data that is growing at an enormous rate due to the emergence of big data and the emergence of the Internet of Things. The big data paradigm of the medical community is not just about large data or tools and processes for processing and analyzing it, but also means a computerized shift in the way people live, think and study. As the medical data is recently released, the demand for the use of medical data is increasing. Therefore, the research on disease detection system based on public data using open source that can help rational and efficient decision making was conducted. As a result of the experiment, unlike a simple disease inquiry or a symptom inquiry about a single disease provided by a public institution, related diseases are searched by a symptom or a cause.
Journal of Korea Society of Industrial Information Systems
/
v.21
no.3
/
pp.13-19
/
2016
Spark, an in-memory big-data processing framework is popular to use for real-time processing workload. Spark can store all intermediate data in the cluster memory so that Spark can minimize I/O access. However, when the resident memory of workload is larger that the physical memory amount of the cluster, the total performance can drop dramatically. In this paper, we analyse the factors of bottleneck on PageRank Application that needs many memory through experiment, and cluster the Spark with Tachyon File System for using memory to solve the factor of bottleneck and then we improve the performance about 18%.
Korean Journal of Agricultural and Forest Meteorology
/
v.22
no.4
/
pp.340-345
/
2020
In this study, we developed the quality control and assurance method of measurement data of SPAR (Soil-Plant-Atmosphere-Research) system, a climate change research facility, for the first time. It was found that the precise processing of CO2 flux data among many observations were sig nificantly important to increase the accuracy of canopy photosynthesis measurements in the SPAR system. The collected raw CO2 flux data should first be removed error and missing data and then replaced with estimated data according to photosynthetic lig ht response curve model. Comparing the correlation between cumulative net assimilation and soybean biomass, the quality control and assurance of the raw CO2 flux data showed an improved effect on canopy photosynthesis evaluation by increasing the coefficient of determination (R2) and lowering the root mean square error (RMSE). These data processing methods are expected to be usefully applied to the development of crop growth model using SPAR system.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.10
/
pp.3482-3497
/
2021
Artificial intelligence has emerged as the core of the 4th industrial revolution, and large amounts of data processing, such as big data technology and rapid data analysis, are inevitable. The most fundamental and universal data interpretation technique is an analysis of information through regression, which is also the basis of machine learning. Ridge regression is a technique of regression that decreases sensitivity to unique or outlier information. The time-consuming calculation portion of the matrix computation, however, basically includes the introduction of an inverse matrix. As the size of the matrix expands, the matrix solution method becomes a major challenge. In this paper, a new algorithm is introduced to enhance the speed of ridge regression estimator calculation through series expansion and computation recycle without adopting an inverse matrix in the calculation process or other factorization methods. In addition, the performances of the proposed algorithm and the existing algorithm were compared according to the matrix size. Overall, excellent speed-up of the proposed algorithm with good accuracy was demonstrated.
International Journal of Internet, Broadcasting and Communication
/
v.14
no.4
/
pp.228-239
/
2022
Many countries around the world using ICT technologies have various technologies to keep pace with the 4th industrial revolution, and various algorithms and systems have been developed accordingly. Among them, many industries and researchers are investing in unmanned automation systems based on AI. At the time when new technology development and algorithms are developed, decision-making by big data analysis applied to AI systems must be equipped with more sophistication. We apply, Pearson's correlation analysis is applied to six independent variables to find out the job satisfaction that office workers feel according to their job characteristics. First, a correlation coefficient is obtained to find out the degree of correlation for each variable. Second, the presence or absence of correlation for each data is verified through hypothesis testing. Third, after visualization processing using the size of the correlation coefficient, the degree of correlation between data is investigated. Fourth, the degree of correlation between variables will be verified based on the correlation coefficient obtained through the experiment and the results of the hypothesis test
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.