• Title/Summary/Keyword: Big data Processing

Search Result 1,063, Processing Time 0.032 seconds

IoT Data Processing Model of Smart Farm Based on Machine Learning (머신러닝 기반 스마트팜의 IoT 데이터 처리 모델)

  • Yoon-Su, Jeong
    • Advanced Industrial SCIence
    • /
    • v.1 no.2
    • /
    • pp.24-29
    • /
    • 2022
  • Recently, smart farm research that applies IoT technology to various farms is being actively conducted to improve agricultural cooling power and minimize cost reduction. In particular, methods for automatically and remotely controlling environmental information data around smart farms through IoT devices are being studied. This paper proposes a processing model that can maintain an optimal growth environment by monitoring environmental information data collected from smart farms in real time based on machine learning. Since the proposed model uses machine learning technology, environmental information is grouped into multiple blockchains to enable continuous data collection through rich big data securing measures. In addition, the proposed model selectively (or binding) the collected environmental information data according to priority using weights and correlation indices. Finally, the proposed model allows us to extend the cost of processing environmental information to n-layer to a minimum so that we can process environmental information in real time.

Adaptive Recommendation System for Tourism by Personality Type Using Deep Learning

  • Jeong, Chi-Seo;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.55-60
    • /
    • 2020
  • Adaptive recommendation systems have been developed with big data processing as a system that provides services tailored to users based on user information and usage patterns. Deep learning can be used in these adaptive recommendation systems to handle big data, providing more efficient user-friendly recommendation services. In this paper, we propose a system that uses deep learning to categorize and recommend tourism types to suit the user's personality. The system was divided into three layers according to its core role to increase efficiency and facilitate maintenance. Each layer consists of the Service Provisioning Layer that real users encounter, the Recommendation Service Layer, which provides recommended services based on user information entered, and the Adaptive Definition Layer, which learns the types of tourism suitable for personality types. The proposed system is highly scalable because it provides services using deep learning, and the adaptive recommendation system connects the user's personality type and tourism type to deliver the data to the user in a flexible manner.

Differentiation of Legal Rules and Individualization of Court Decisions in Criminal, Administrative and Civil Cases: Identification and Assessment Methods

  • Egor, Trofimov;Oleg, Metsker;Georgy, Kopanitsa
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.125-131
    • /
    • 2022
  • The diversity and complexity of criminal, administrative and civil cases resolved by the courts makes it difficult to develop universal automated tools for the analysis and evaluation of justice. However, big data generated in the scope of justice gives hope that this problem will be resolved as soon as possible. The big data applying makes it possible to identify typical options for resolving cases, form detailed rules for the individualization of a court decision, and correlate these rules with an abstract provisions of law. This approach allows us to somewhat overcome the contradiction between the abstract and the concrete in law, to automate the analysis of justice and to model e-justice for scientific and practical purposes. The article presents the results of using dimension reduction, SHAP value, and p-value to identify, analyze and evaluate the individualization of justice and the differentiation of legal regulation. Processing and analysis of arrays of court decisions by computational methods make it possible to identify the typical views of courts on questions of fact and questions of law. This knowledge, obtained automatically, is promising for the scientific study of justice issues, the improvement of the prescriptions of the law and the probabilistic prediction of a court decision with a known set of facts.

A Deep Learning Approach for Intrusion Detection

  • Roua Dhahbi;Farah Jemili
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.89-96
    • /
    • 2023
  • Intrusion detection has been widely studied in both industry and academia, but cybersecurity analysts always want more accuracy and global threat analysis to secure their systems in cyberspace. Big data represent the great challenge of intrusion detection systems, making it hard to monitor and analyze this large volume of data using traditional techniques. Recently, deep learning has been emerged as a new approach which enables the use of Big Data with a low training time and high accuracy rate. In this paper, we propose an approach of an IDS based on cloud computing and the integration of big data and deep learning techniques to detect different attacks as early as possible. To demonstrate the efficacy of this system, we implement the proposed system within Microsoft Azure Cloud, as it provides both processing power and storage capabilities, using a convolutional neural network (CNN-IDS) with the distributed computing environment Apache Spark, integrated with Keras Deep Learning Library. We study the performance of the model in two categories of classification (binary and multiclass) using CSE-CIC-IDS2018 dataset. Our system showed a great performance due to the integration of deep learning technique and Apache Spark engine.

External Merge Sorting in Tajo with Variable Server Configuration (매개변수 환경설정에 따른 타조의 외부합병정렬 성능 연구)

  • Lee, Jongbaeg;Kang, Woon-hak;Lee, Sang-won
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.820-826
    • /
    • 2016
  • There is a growing requirement for big data processing which extracts valuable information from a large amount of data. The Hadoop system employs the MapReduce framework to process big data. However, MapReduce has limitations such as inflexible and slow data processing. To overcome these drawbacks, SQL query processing techniques known as SQL-on-Hadoop were developed. Apache Tajo, one of the SQL-on-Hadoop techniques, was developed by a Korean development group. External merge sort is one of the heavily used algorithms in Tajo for query processing. The performance of external merge sort in Tajo is influenced by two parameters, sort buffer size and fanout. In this paper, we analyzed the performance of external merge sort in Tajo with various sort buffer sizes and fanouts. In addition, we figured out that there are two major causes of differences in the performance of external merge sort: CPU cache misses which increase as the sort buffer size grows; and the number of merge passes determined by fanout.

A Study on the Introduction of Intelligent Document Processing and Change of Record Management (지능형 문서처리 도입과 기록관리 변화에 관한 연구)

  • Ryu, Hanjo;Lee, Kyungnam;Hwang, Jinhyun;Yim, Jinhee
    • The Korean Journal of Archival Studies
    • /
    • no.68
    • /
    • pp.41-72
    • /
    • 2021
  • In order to analyze big data, documents should be converted to a open standard format to increase machine readability. It also need natural language processing tools. This study focused on the background of intelligent document processing and the status of research in the public sector, and predicted the changes in work that intelligent document processing would bring. This study noted the changes that intelligent document processing would bring to the archival work, and also considered changes in the role of archivist and their required competencies. Changes in archival work could be anticipated across a wide range of Records Management work and Archives Management work. In particular, it was expected to have a significant impact on the automation of repetitive archival tasks or the description and utilization of records. This study proposed the need to prepare new archival work procedures, methods, and necessary competencies in response to these change in archival work.

A Research on the Energy Data Analysis using Machine Learning (머신러닝 기법을 활용한 에너지 데이터 분석에 관한 연구)

  • Kim, Dongjoo;Kwon, Seongchul;Moon, Jonghui;Sim, Gido;Bae, Moonsung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.301-307
    • /
    • 2021
  • After the spread of the data collection devices such as smart meters, energy data is increasingly collected in a variety of ways, and its importance continues to grow. However, due to technical or practical limitations, errors such as missing or outliers in the data occur during data collection process. Especially in the case of customer-related data, billing problems may occur, so energy companies are conducting various research to process such data. In addition, efforts are being made to create added value from data, which makes it difficult to provide such services unless reliability of data is guaranteed. In order to solve these challenges, this research analyzes prior research related to bad data processing specifically in the energy field, and propose new missing value processing methods to improve the reliability and field utilization of energy data.

Development of Distributed Smart Data Monitoring System for Heterogeneous Manufacturing Machines Operation (이종 공작기계 운용 관리를 위한 분산 스마트 데이터 모니터링 시스템 개발)

  • Lee, Young-woon;Choi, Young-ju;Lee, Jong-Hyeok;Kim, Byung-Gyu;Lee, Seung-Woo;Park, Jong-Kweon
    • Journal of Digital Contents Society
    • /
    • v.18 no.6
    • /
    • pp.1175-1182
    • /
    • 2017
  • Recent trend in the manufacturing industry is focused on the convergence with IoT and Big Data, by emergence of the 4th Industrial Revolution. To realize a smart factory, the proposed system based on MTConnect technology collects and integrates various status information of machines from many production facilities including heterogeneous devices. Also it can distribute the acquisited status of heterogeneous manufacturing machines to the remote devices. As a key technology of a flexible automated production line, the proposed system can provide much possibility to manage important information such as error detection and processing state management in the unmanned automation line.

A Study on the Improvement of Heat Energy Efficiency for Utilities of Heat Consumer Plants based on Reinforcement Learning (강화학습을 기반으로 하는 열사용자 기계실 설비의 열효율 향상에 대한 연구)

  • Kim, Young-Gon;Heo, Keol;You, Ga-Eun;Lim, Hyun-Seo;Choi, Jung-In;Ku, Ki-Dong;Eom, Jae-Sik;Jeon, Young-Shin
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.26-31
    • /
    • 2018
  • This paper introduces a study to improve the thermal efficiency of the district heating user control facility based on reinforcement learning. As an example, it is proposed a general method of constructing a deep Q learning network(DQN) using deep Q learning, which is a reinforcement learning algorithm that does not specify a model. In addition, it is also introduced the big data platform system and the integrated heat management system which are specialized in energy field applied in processing huge amount of data processing from IoT sensor installed in many thermal energy control facilities.

An Analysis of Factors Affecting Quality of Life through the Analysis of Public Health Big Data (클라우드 기반의 공개의료 빅데이터 분석을 통한 삶의 질에 영향을 미치는 요인분석)

  • Kim, Min-kyoung;Cho, Young-bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.6
    • /
    • pp.835-841
    • /
    • 2018
  • In this study, we analyzed public health data analysis using the hadoop-based spack in the cloud environment using the data of the Community Health Survey from 2012 to 2014, and the factors affecting the quality of life and quality of life. In the proposed paper, we constructed a cloud manager for parallel processing support using Hadoop - based Spack for open medical big data analysis. And we analyzed the factors affecting the "quality of life" of the individual among open medical big data quickly without restriction of hardware. The effects of public health data on health - related quality of life were classified into personal characteristics and community characteristics. And multiple-level regression analysis (ANOVA, t-test). As a result of the experiment, the factors affecting the quality of life were 73.8 points for men and 70.0 points for women, indicating that men had higher health - related quality of life than women.