Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.05a
/
pp.732-733
/
2014
This study aims to examine the R&D trends on Big Data sector through patent analysis and to suggest directions of the R&D activities in Korea. According to the results of analysis, the R&D trends of Big Data sector have shown two characteristics. First, the US has monopolized the world market of Big Data Sector. The patent activities of US have shown relatively even throughout every technology. And the average share of each technology is over 40%. Second, the trends of R&D have been changed. In the past, data analysis and processing technologies were the mainstream, whereas data operations and management technologies are mainly featured. However, the patent applications in Korea have been concentrated on storage technologies, while the applications for data operations and management technologies are correspondingly low; therefore, it seemingly needs urgent research and development of relevant technologies.
The Journal of the Korea institute of electronic communication sciences
/
v.16
no.5
/
pp.851-858
/
2021
Due to the increase in renewable energy and distributed resources, not only traditional data but also various energy-related data are being generated in the new energy industry. In other words, there are various renewable energy facilities and power generation data, system operation data, metering and rate-related data, as well as weather and energy efficiency data necessary for new services and analysis. Energy big data processing technology can systematically analyze and diagnose data generated in the first half of the power production and consumption infrastructure, including distributed resources, systems, and AMI. Through this, it will be a technology that supports the creation of new businesses in convergence between the ICT industry and the energy industry. To this end, research on the data analysis system, such as itemized characteristic analysis of the collected data, correlation sampling, categorization of each feature, and element definition, is needed. In addition, research on data purification technology for data loss and abnormal state processing should be conducted. In addition, it is necessary to develop and structure NIFI, Spark, and HDFS systems so that energy data can be stored and managed in real time. In this study, the overall energy data processing technology and system for various power transactions as described above were proposed.
Recently, with the remarkable increase of social network services, it is necessary to extract interesting information from lots of data about various individual opinions and preferences on SNS(Social Network Service). The sentiment information can be applied to various fields of society such as politics, public opinions, economics, personal services and entertainments. To extract sentiment information, it is necessary to use processing techniques that store a large amount of SNS data, extract meaningful data from them, and search the sentiment information. This paper proposes an efficient method to extract sentiment information from various unstructured big data on social networks using HDFS(Hadoop Distributed File System) platform and MapReduce functions. In experiments, the proposed method collects and stacks data steadily as the number of data is increased. When the proposed functions are applied to sentiment analysis, the system keeps load balancing and the analysis results are very close to the results of manual work.
사물 인터넷(Internet of Things, IoT)이란 사물 인터넷으로서 사물을 서로 연결 및 통신하여 정보를 주고 받을 수 있게 하는 기술이다. 사물 인터넷의 급속한 성장으로 인해 수많은 데이터가 발생하게 되었고, 이러한 이유로 인해 빅데이터(big-data) 기술이 대두되었다. 빅데이터는 정형 데이터 뿐만 아니라 사진, 동영상 등의 비정형 데이터 또한 분석하고 활용하는 기술이기 때문에 사물 인터넷과 빅데이터 기술은 서로 보완적인 관계에 있다. 이러한 두 가지 기술의 특성에 기초하여, 본 논문에서는 빅데이터와 사물 인터넷에 대한 정의와 동향에 대하여 알아보고 이러한 두 가지 기술을 연계해 활용한 실제 플랫폼과 스마트 시티 등에 대한 실생활에 쓰이는 실제 사례 및 기술들에 대해 연구하였다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.9
/
pp.2155-2160
/
2014
In this paper, we proposes a new document summarization method using the extracted semantic feature which the semantic feature is extracted by distributed parallel processing based Hadoop. The proposed method can well represent the inherent structure of documents using the semantic feature by the non-negative matrix factorization (NMF). In addition, it can summarize the big data document using Hadoop. The experimental results demonstrate that the proposed method can summarize the big data document which a single computer can not summarize those.
빅데이터 산업 부상과 함께 교육 데이터 분석 분야가 새롭게 주목받고 있다. 교육 현장에서 학습 데이터의 양과 종류는 꾸준히 증가하고 있고 이를 분석하기 위한 정보기술도 계속 발전하고 있다. 한편, 학교 교육은 사회적 성취와 밀접한 관련이 있어 사회이동의 중요한 수단이 되는 만큼 학교 교육으로부터 이탈할 위험이 있는 학생들을 조기에 발견하여 이탈을 방지하는 것은 매우 중요하다. 본 논문은 대학생의 중도탈락을 예방하기 위해 로지스틱 회귀분석과 다층 퍼셉트론 기법을 이용해 학습 데이터를 분석하여 예측 모델을 생성하고 해당 모델을 평가한다. 평가 결과, 다층 퍼셉트론 모델이 로지스틱 회귀분석 모델에 비해 정확도와 재현율은 우수하였지만 정밀도는 약간 저조하였다.
본 연구에서는 네이버 영화평을 학습데이터로 사용하여 영화평 감성분류에 필요한 감성사전을 자동으로 구축하는 방법에 대해 제안한다. 이 때 학습데이터의 분량과 긍정/부정 영화평의 비율을 달리하여 네 가지의 학습데이터를 마련하고, 각 경우에 대하여 감성사전과 나이브베이즈(이하, NB) 분류기를 구축한 후, 이 둘의 성능을 비교했다. 네 종류의 학습데이터로 구축한 감성사전과 NB 분류기를 이용하여 영화평 감성 자동분류 성능을 비교한 결과, 네 경우의 평균 균형정확도는 감성사전이 78.2%, NB 분류기가 66.1%였다.
Big data processing technology and artificial intelligence (AI) are increasingly attracting attention. Natural language processing is an important research area of artificial intelligence. In this paper, we use Korean news articles to extract topic distributions in documents and word distribution vectors in topics through LDA-based Topic Modeling. Then, we use Word2vec to vector words, and generate a weight matrix to derive the relevance SCORE considering the semantic relationship between the words. We propose a way to recommend documents in order of high score.
Park, JaeSoon;Kwon, Seong Gyu;Oh, Ji Won;Lee, JongHyuk
Annual Conference of KIPS
/
2020.11a
/
pp.663-664
/
2020
차세대 염기서열 분석 기술은 성능과 비용 면에서 매우 향상되어 한 개체 내 여러 세포의 유전자 분석이 가능한 수준이다. 한 개체 내 여러 조직 세포의 유전자는 모두 동일하지 않기 때문에 여러 조직 세포의 Lineage 를 계층적으로 표현하고 이를 조직 세포 간 변이 정도를 파악하는 데 활용한다면 암 돌연변이 발생 등을 미리 예측할 수 있다. 본 논문은 한 개체 내 여러 조직 간 변이를 관찰하기 위해 변이 검출 데이터를 계층적 군집 방법을 이용해 분석하고 이를 시각화 하는 방법을 제안한다. 실제의 8 개 조직 세포의 유전자를 분석하고 변이를 검출하여 Dendrogram 그래프로 시각화 하였다.
흔히, 웹 플랫폼에서 검색했을 때, 게시글 마지막부분에 광고인지 여부를 판단 할 수 있는 관련 글들이 나타난다. 이 글들은 사용자의 판단력을 흐리게 할 수 있다고 판단되며 개선의 필요성이 제기된다. 따라서 본 논문에서는 사용자들에게 웹 게시글에서 나타나는 광고성 여부에 대해 신속한 판단이 가능하도록 하는 환경에 대한 연구를 하고자 한다. 본 논문에서는 게시글에 포함된 광고 관련 문구를 찾아 페이지 상단에 해당 정보를 제공하는 프로그램을 제작 게시함으로써, 광고여부를 판단할 수 있도록 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.