• Title/Summary/Keyword: Big data Processing

Search Result 1,063, Processing Time 0.031 seconds

A Study on the Big Data Analysis System for Searching of the Flooded Road Areas (도로 침수영역의 탐색을 위한 빅데이터 분석 시스템 연구)

  • Song, Youngmi;Kim, Chang Soo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.8
    • /
    • pp.925-934
    • /
    • 2015
  • The frequency of natural disasters because of global warming is gradually increasing, risks of flooding due to typhoon and torrential rain have also increased. Among these causes, the roads are flooded by suddenly torrential rain, and then vehicle and personal injury are happening. In this respect, because of the possibility that immersion of a road may occur in a second, it is necessary to study the rapid data collection and quick response system. Our research proposes a big data analysis system based on the collected information and a variety of system information collection methods for searching flooded road areas by torrential rains. The data related flooded roads are utilized the SNS data, meteorological data and the road link data, etc. And the big data analysis system is implemented the distributed processing system based on the Hadoop platform.

Design and Implementation of Vehicle Route Tracking System using Hadoop-Based Bigdata Image Processing (하둡 기반 빅데이터 영상 처리를 통한 차량 이동경로 추적 시스템의 설계 및 구현)

  • Yang, Seongeun;Choi, Changyeol;Choi, Hwangkyu
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.447-454
    • /
    • 2013
  • As the surveillance CCTVs are increasing every year, big data image processing for the CCTV image data has become a hot issue. In this paper, we propose a Hadoop-based big data image processing technique to recognize a vehicle number from a large amount of automatic number plate images taken from CCTVs. We also implement the vehicle route tracking system that displays the moving path of the searched vehicle on Google Maps with the related information together. In order to evaluate the performance we compare and analysis the vehicle number recognition time for a lot of CCTV image data in Hadoop and the single PC environment.

Design of RBF Neural Networks Based on Recursive Weighted Least Square Estimation for Processing Massive Meteorological Radar Data and Its Application (방대한 기상 레이더 데이터의 원할한 처리를 위한 순환 가중최소자승법 기반 RBF 뉴럴 네트워크 설계 및 응용)

  • Kang, Jeon-Seong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.99-106
    • /
    • 2015
  • In this study, we propose Radial basis function Neural Network(RBFNN) using Recursive Weighted Least Square Estimation(RWLSE) to effectively deal with big data class meteorological radar data. In the condition part of the RBFNN, Fuzzy C-Means(FCM) clustering is used to obtain fitness values taking into account characteristics of input data, and connection weights are defined as linear polynomial function in the conclusion part. The coefficients of the polynomial function are estimated by using RWLSE in order to cope with big data. As recursive learning technique, RWLSE which is based on WLSE is carried out to efficiently process big data. This study is experimented with both widely used some Machine Learning (ML) dataset and big data obtained from meteorological radar to evaluate the performance of the proposed classifier. The meteorological radar data as big data consists of precipitation echo and non-precipitation echo, and the proposed classifier is used to efficiently classify these echoes.

Study on Big Data Linkage Method for Managing Port Infrastructure Disasters and Aging (항만 인프라 재해 및 노후화 관리를 위한 빅데이터 연계 방안 연구)

  • Choi, Woo-geun;Park, Sun-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.134-137
    • /
    • 2021
  • This study aims to develop a digital twin and big data-based port infrastructure control system that reflects smart maintenance technology. It is a technology that can evaluate aging and disaster risk by converting heterogeneous data such as sensing data and image data acquired from port infrastructure into big data, visualized in a digital twin-based control system, and comprehensively analyzed. The meaning of big data to express the physical world and processes by combining data, which are the core components of the virtual world, and the matters to be reflected in each stage of securing, processing, storing, analyzing and utilizing necessary big data, and we would like to define methods for linking with IT resources.

  • PDF

Capturing Data from Untapped Sources using Apache Spark for Big Data Analytics (빅데이터 분석을 위해 아파치 스파크를 이용한 원시 데이터 소스에서 데이터 추출)

  • Nichie, Aaron;Koo, Heung-Seo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1277-1282
    • /
    • 2016
  • The term "Big Data" has been defined to encapsulate a broad spectrum of data sources and data formats. It is often described to be unstructured data due to its properties of variety in data formats. Even though the traditional methods of structuring data in rows and columns have been reinvented into column families, key-value or completely replaced with JSON documents in document-based databases, the fact still remains that data have to be reshaped to conform to certain structure in order to persistently store the data on disc. ETL processes are key in restructuring data. However, ETL processes incur additional processing overhead and also require that data sources are maintained in predefined formats. Consequently, data in certain formats are completely ignored because designing ETL processes to cater for all possible data formats is almost impossible. Potentially, these unconsidered data sources can provide useful insights when incorporated into big data analytics. In this project, using big data solution, Apache Spark, we tapped into other sources of data stored in their raw formats such as various text files, compressed files etc and incorporated the data with persistently stored enterprise data in MongoDB for overall data analytics using MongoDB Aggregation Framework and MapReduce. This significantly differs from the traditional ETL systems in the sense that it is compactible regardless of the data formats at source.

Distributed Processing of Big Data Analysis based on R using SparkR (SparkR을 이용한 R 기반 빅데이터 분석의 분산 처리)

  • Ryu, Woo-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.161-166
    • /
    • 2022
  • In this paper, we analyze the problems that occur when performing the big data analysis using R as a data analysis tool, and present the usefulness of the data analysis with SparkR which connects R and Spark to support distributed processing of big data effectively. First, we study the memory allocation problem of R which occurs when loading large amounts of data and performing operations, and the characteristics and programming environment of SparkR. And then, we perform the comparison analysis of the execution performance when linear regression analysis is performed in each environment. As a result of the analysis, it was shown that R can be used for data analysis through SparkR without additional language learning, and the code written in R can be effectively processed distributedly according to the increase in the number of nodes in the cluster.

Semantic Computing for Big Data: Approaches, Tools, and Emerging Directions (2011-2014)

  • Jeong, Seung Ryul;Ghani, Imran
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.2022-2042
    • /
    • 2014
  • The term "big data" has recently gained widespread attention in the field of information technology (IT). One of the key challenges in making use of big data lies in finding ways to uncover relevant and valuable information. The high volume, velocity, and variety of big data hinder the use of solutions that are available for smaller datasets, which involve the manual interpretation of data. Semantic computing technologies have been proposed as a means of dealing with these issues, and with the advent of linked data in recent years, have become central to mainstream semantic computing. This paper attempts to uncover the state-of-the-art semantics-based approaches and tools that can be leveraged to enrich and enhance today's big data. It presents research on the latest literature, including 61 studies from 2011 to 2014. In addition, it highlights the key challenges that semantic approaches need to address in the near future. For instance, this paper presents cutting-edge approaches to ontology engineering, ontology evolution, searching and filtering relevant information, extracting and reasoning, distributed (web-scale) reasoning, and representing big data. It also makes recommendations that may encourage researchers to more deeply explore the applications of semantic technology, which could improve the processing of big data. The findings of this study contribute to the existing body of basic knowledge on semantics and computational issues related to big data, and may trigger further research on the field. Our analysis shows that there is a need to put more effort into proposing new approaches, and that tools must be created that support researchers and practitioners in realizing the true power of semantic computing and solving the crucial issues of big data.