• Title/Summary/Keyword: Big data Processing

Search Result 1,063, Processing Time 0.029 seconds

The Analyzing Risk Factor of Big Data : Big Data Processing Perspective (빅데이터 처리 프로세스에 따른 빅데이터 위험요인 분석)

  • Lee, Ji-Eun;Kim, Chang-Jae;Lee, Nam-Yong
    • Journal of Information Technology Services
    • /
    • v.13 no.2
    • /
    • pp.185-194
    • /
    • 2014
  • Recently, as value for practical use of big data is evaluated, companies and organizations that create benefit and profit are gradually increasing with application of big data. But specifical and theoretical study about possible risk factors as introduction of big data is not being conducted. Accordingly, the study extracts the possible risk factors as introduction of big data based on literature reviews and classifies according to big data processing, data collection, data storage, data analysis, analysis data visualization and application. Also, the risk factors have order of priority according to the degree of risk from the survey of experts. This study will make a chance that can avoid risks by bid data processing and preparation for risks in order of dangerous grades of risk.

Comparison of Sentiment Analysis from Large Twitter Datasets by Naïve Bayes and Natural Language Processing Methods

  • Back, Bong-Hyun;Ha, Il-Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.239-245
    • /
    • 2019
  • Recently, effort to obtain various information from the vast amount of social network services (SNS) big data generated in daily life has expanded. SNS big data comprise sentences classified as unstructured data, which complicates data processing. As the amount of processing increases, a rapid processing technique is required to extract valuable information from SNS big data. We herein propose a system that can extract human sentiment information from vast amounts of SNS unstructured big data using the naïve Bayes algorithm and natural language processing (NLP). Furthermore, we analyze the effectiveness of the proposed method through various experiments. Based on sentiment accuracy analysis, experimental results showed that the machine learning method using the naïve Bayes algorithm afforded a 63.5% accuracy, which was lower than that yielded by the NLP method. However, based on data processing speed analysis, the machine learning method by the naïve Bayes algorithm demonstrated a processing performance that was approximately 5.4 times higher than that by the NLP method.

Study of In-Memory based Hybrid Big Data Processing Scheme for Improve the Big Data Processing Rate (빅데이터 처리율 향상을 위한 인-메모리 기반 하이브리드 빅데이터 처리 기법 연구)

  • Lee, Hyeopgeon;Kim, Young-Woon;Kim, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.2
    • /
    • pp.127-134
    • /
    • 2019
  • With the advancement of IT technology, the amount of data generated has been growing exponentially every year. As an alternative to this, research on distributed systems and in-memory based big data processing schemes has been actively underway. The processing power of traditional big data processing schemes enables big data to be processed as fast as the number of nodes and memory capacity increases. However, the increase in the number of nodes inevitably raises the frequency of failures in a big data infrastructure environment, and infrastructure management points and infrastructure operating costs also increase accordingly. In addition, the increase in memory capacity raises infrastructure costs for a node configuration. Therefore, this paper proposes an in-memory-based hybrid big data processing scheme for improve the big data processing rate. The proposed scheme reduces the number of nodes compared to traditional big data processing schemes based on distributed systems by adding a combiner step to a distributed system processing scheme and applying an in-memory based processing technology at that step. It decreases the big data processing time by approximately 22%. In the future, realistic performance evaluation in a big data infrastructure environment consisting of more nodes will be required for practical verification of the proposed scheme.

Implementation and Performance Aanalysis of Efficient Big Data Processing System Through Dynamic Configuration of Edge Server Computing and Storage Modules (BigCrawler: 엣지 서버 컴퓨팅·스토리지 모듈의 동적 구성을 통한 효율적인 빅데이터 처리 시스템 구현 및 성능 분석)

  • Kim, Yongyeon;Jeon, Jaeho;Kang, Sungjoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.259-266
    • /
    • 2021
  • Edge Computing enables real-time big data processing by performing computing close to the physical location of the user or data source. However, in an edge computing environment, various situations that affect big data processing performance may occur depending on temporary service requirements or changes of physical resources in the field. In this paper, we proposed a BigCrawler system that dynamically configures the computing module and storage module according to the big data collection status and computing resource usage status in the edge computing environment. And the feature of big data processing workload according to the arrangement of computing module and storage module were analyzed.

DTG Big Data Analysis for Fuel Consumption Estimation

  • Cho, Wonhee;Choi, Eunmi
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.285-304
    • /
    • 2017
  • Big data information and pattern analysis have applications in many industrial sectors. To reduce energy consumption effectively, the eco-driving method that reduces the fuel consumption of vehicles has recently come under scrutiny. Using big data on commercial vehicles obtained from digital tachographs (DTGs), it is possible not only to aid traffic safety but also improve eco-driving. In this study, we estimate fuel consumption efficiency by processing and analyzing DTG big data for commercial vehicles using parallel processing with the MapReduce mechanism. Compared to the conventional measurement of fuel consumption using the On-Board Diagnostics II (OBD-II) device, in this paper, we use actual DTG data and OBD-II fuel consumption data to identify meaningful relationships to calculate fuel efficiency rates. Based on the driving pattern extracted from DTG data, estimating fuel consumption is possible by analyzing driving patterns obtained only from DTG big data.

Big Data Key Challenges

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.340-350
    • /
    • 2022
  • The big data term refers to the great volume of data and complicated data structure with difficulties in collecting, storing, processing, and analyzing these data. Big data analytics refers to the operation of disclosing hidden patterns through big data. This information and data set cloud to be useful and provide advanced services. However, analyzing and processing this information could cause revealing and disclosing some sensitive and personal information when the information is contained in applications that are correlated to users such as location-based services, but concerns are diminished if the applications are correlated to general information such as scientific results. In this work, a survey has been done over security and privacy challenges and approaches in big data. The challenges included here are in each of the following areas: privacy, access control, encryption, and authentication in big data. Likewise, the approaches presented here are privacy-preserving approaches in big data, access control approaches in big data, encryption approaches in big data, and authentication approaches in big data.

Implement of MapReduce-based Big Data Processing Scheme for Reducing Big Data Processing Delay Time and Store Data (빅데이터 처리시간 감소와 저장 효율성이 향상을 위한 맵리듀스 기반 빅데이터 처리 기법 구현)

  • Lee, Hyeopgeon;Kim, Young-Woon;Kim, Ki-Young
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.13-19
    • /
    • 2018
  • MapReduce, the Hadoop's essential core technology, is most commonly used to process big data based on the Hadoop distributed file system. However, the existing MapReduce-based big data processing techniques have a feature of dividing and storing files in blocks predefined in the Hadoop distributed file system, thus wasting huge infrastructure resources. Therefore, in this paper, we propose an efficient MapReduce-based big data processing scheme. The proposed method enhances the storage efficiency of a big data infrastructure environment by converting and compressing the data to be processed into a data format in advance suitable for processing by MapReduce. In addition, the proposed method solves the problem of the data processing time delay arising from when implementing with focus on the storage efficiency.

Squall: A Real-time Big Data Processing Framework based on TMO Model for Real-time Events and Micro-batch Processing (Squall: 실시간 이벤트와 마이크로-배치의 동시 처리 지원을 위한 TMO 모델 기반의 실시간 빅데이터 처리 프레임워크)

  • Son, Jae Gi;Kim, Jung Guk
    • Journal of KIISE
    • /
    • v.44 no.1
    • /
    • pp.84-94
    • /
    • 2017
  • Recently, the importance of velocity, one of the characteristics of big data (5V: Volume, Variety, Velocity, Veracity, and Value), has been emphasized in the data processing, which has led to several studies on the real-time stream processing, a technology for quick and accurate processing and analyses of big data. In this paper, we propose a Squall framework using Time-triggered Message-triggered Object (TMO) technology, a model that is widely used for processing real-time big data. Moreover, we provide a description of Squall framework and its operations under a single node. TMO is an object model that supports the non-regular real-time processing method for certain conditions as well as regular periodic processing for certain amount of time. A Squall framework can support the real-time event stream of big data and micro-batch processing with outstanding performances, as compared to Apache storm and Spark Streaming. However, additional development for processing real-time stream under multiple nodes that is common under most frameworks is needed. In conclusion, the advantages of a TMO model can overcome the drawbacks of Apache storm or Spark Streaming in the processing of real-time big data. The TMO model has potential as a useful model in real-time big data processing.

Advanced Big Data Analysis, Artificial Intelligence & Communication Systems

  • Jeong, Young-Sik;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Recently, big data and artificial intelligence (AI) based on communication systems have become one of the hottest issues in the technology sector, and methods of analyzing big data using AI approaches are now considered essential. This paper presents diverse paradigms to subjects which deal with diverse research areas, such as image segmentation, fingerprint matching, human tracking techniques, malware distribution networks, methods of intrusion detection, digital image watermarking, wireless sensor networks, probabilistic neural networks, query processing of encrypted data, the semantic web, decision-making, software engineering, and so on.

Big Data Platform Based on Hadoop and Application to Weight Estimation of FPSO Topside

  • Kim, Seong-Hoon;Roh, Myung-Il;Kim, Ki-Su;Oh, Min-Jae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.32-40
    • /
    • 2017
  • Recently, the amount of data to be processed and the complexity thereof have been increasing due to the development of information and communication technology, and industry's interest in such big data is increasing day by day. In the shipbuilding and offshore industry also, there is growing interest in the effective utilization of data, since various and vast amounts of data are being generated in the process of design, production, and operation. In order to effectively utilize big data in the shipbuilding and offshore industry, it is necessary to store and process large amounts of data. In this study, it was considered efficient to apply Hadoop and R, which are mostly used in big data related research. Hadoop is a framework for storing and processing big data. It provides the Hadoop Distributed File System (HDFS) for storing big data, and the MapReduce function for processing. Meanwhile, R provides various data analysis techniques through the language and environment for statistical calculation and graphics. While Hadoop makes it is easy to handle big data, it is difficult to finely process data; and although R has advanced analysis capability, it is difficult to use to process large data. This study proposes a big data platform based on Hadoop for applications in the shipbuilding and offshore industry. The proposed platform includes the existing data of the shipyard, and makes it possible to manage and process the data. To check the applicability of the platform, it is applied to estimate the weights of offshore structure topsides. In this study, we store data of existing FPSOs in Hadoop-based Hortonworks Data Platform (HDP), and perform regression analysis using RHadoop. We evaluate the effectiveness of large data processing by RHadoop by comparing the results of regression analysis and the processing time, with the results of using the conventional weight estimation program.