Recently, as value for practical use of big data is evaluated, companies and organizations that create benefit and profit are gradually increasing with application of big data. But specifical and theoretical study about possible risk factors as introduction of big data is not being conducted. Accordingly, the study extracts the possible risk factors as introduction of big data based on literature reviews and classifies according to big data processing, data collection, data storage, data analysis, analysis data visualization and application. Also, the risk factors have order of priority according to the degree of risk from the survey of experts. This study will make a chance that can avoid risks by bid data processing and preparation for risks in order of dangerous grades of risk.
Journal of information and communication convergence engineering
/
v.17
no.4
/
pp.239-245
/
2019
Recently, effort to obtain various information from the vast amount of social network services (SNS) big data generated in daily life has expanded. SNS big data comprise sentences classified as unstructured data, which complicates data processing. As the amount of processing increases, a rapid processing technique is required to extract valuable information from SNS big data. We herein propose a system that can extract human sentiment information from vast amounts of SNS unstructured big data using the naïve Bayes algorithm and natural language processing (NLP). Furthermore, we analyze the effectiveness of the proposed method through various experiments. Based on sentiment accuracy analysis, experimental results showed that the machine learning method using the naïve Bayes algorithm afforded a 63.5% accuracy, which was lower than that yielded by the NLP method. However, based on data processing speed analysis, the machine learning method by the naïve Bayes algorithm demonstrated a processing performance that was approximately 5.4 times higher than that by the NLP method.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.12
no.2
/
pp.127-134
/
2019
With the advancement of IT technology, the amount of data generated has been growing exponentially every year. As an alternative to this, research on distributed systems and in-memory based big data processing schemes has been actively underway. The processing power of traditional big data processing schemes enables big data to be processed as fast as the number of nodes and memory capacity increases. However, the increase in the number of nodes inevitably raises the frequency of failures in a big data infrastructure environment, and infrastructure management points and infrastructure operating costs also increase accordingly. In addition, the increase in memory capacity raises infrastructure costs for a node configuration. Therefore, this paper proposes an in-memory-based hybrid big data processing scheme for improve the big data processing rate. The proposed scheme reduces the number of nodes compared to traditional big data processing schemes based on distributed systems by adding a combiner step to a distributed system processing scheme and applying an in-memory based processing technology at that step. It decreases the big data processing time by approximately 22%. In the future, realistic performance evaluation in a big data infrastructure environment consisting of more nodes will be required for practical verification of the proposed scheme.
IEMEK Journal of Embedded Systems and Applications
/
v.16
no.6
/
pp.259-266
/
2021
Edge Computing enables real-time big data processing by performing computing close to the physical location of the user or data source. However, in an edge computing environment, various situations that affect big data processing performance may occur depending on temporary service requirements or changes of physical resources in the field. In this paper, we proposed a BigCrawler system that dynamically configures the computing module and storage module according to the big data collection status and computing resource usage status in the edge computing environment. And the feature of big data processing workload according to the arrangement of computing module and storage module were analyzed.
Big data information and pattern analysis have applications in many industrial sectors. To reduce energy consumption effectively, the eco-driving method that reduces the fuel consumption of vehicles has recently come under scrutiny. Using big data on commercial vehicles obtained from digital tachographs (DTGs), it is possible not only to aid traffic safety but also improve eco-driving. In this study, we estimate fuel consumption efficiency by processing and analyzing DTG big data for commercial vehicles using parallel processing with the MapReduce mechanism. Compared to the conventional measurement of fuel consumption using the On-Board Diagnostics II (OBD-II) device, in this paper, we use actual DTG data and OBD-II fuel consumption data to identify meaningful relationships to calculate fuel efficiency rates. Based on the driving pattern extracted from DTG data, estimating fuel consumption is possible by analyzing driving patterns obtained only from DTG big data.
International Journal of Computer Science & Network Security
/
v.22
no.4
/
pp.340-350
/
2022
The big data term refers to the great volume of data and complicated data structure with difficulties in collecting, storing, processing, and analyzing these data. Big data analytics refers to the operation of disclosing hidden patterns through big data. This information and data set cloud to be useful and provide advanced services. However, analyzing and processing this information could cause revealing and disclosing some sensitive and personal information when the information is contained in applications that are correlated to users such as location-based services, but concerns are diminished if the applications are correlated to general information such as scientific results. In this work, a survey has been done over security and privacy challenges and approaches in big data. The challenges included here are in each of the following areas: privacy, access control, encryption, and authentication in big data. Likewise, the approaches presented here are privacy-preserving approaches in big data, access control approaches in big data, encryption approaches in big data, and authentication approaches in big data.
MapReduce, the Hadoop's essential core technology, is most commonly used to process big data based on the Hadoop distributed file system. However, the existing MapReduce-based big data processing techniques have a feature of dividing and storing files in blocks predefined in the Hadoop distributed file system, thus wasting huge infrastructure resources. Therefore, in this paper, we propose an efficient MapReduce-based big data processing scheme. The proposed method enhances the storage efficiency of a big data infrastructure environment by converting and compressing the data to be processed into a data format in advance suitable for processing by MapReduce. In addition, the proposed method solves the problem of the data processing time delay arising from when implementing with focus on the storage efficiency.
Recently, the importance of velocity, one of the characteristics of big data (5V: Volume, Variety, Velocity, Veracity, and Value), has been emphasized in the data processing, which has led to several studies on the real-time stream processing, a technology for quick and accurate processing and analyses of big data. In this paper, we propose a Squall framework using Time-triggered Message-triggered Object (TMO) technology, a model that is widely used for processing real-time big data. Moreover, we provide a description of Squall framework and its operations under a single node. TMO is an object model that supports the non-regular real-time processing method for certain conditions as well as regular periodic processing for certain amount of time. A Squall framework can support the real-time event stream of big data and micro-batch processing with outstanding performances, as compared to Apache storm and Spark Streaming. However, additional development for processing real-time stream under multiple nodes that is common under most frameworks is needed. In conclusion, the advantages of a TMO model can overcome the drawbacks of Apache storm or Spark Streaming in the processing of real-time big data. The TMO model has potential as a useful model in real-time big data processing.
Recently, big data and artificial intelligence (AI) based on communication systems have become one of the hottest issues in the technology sector, and methods of analyzing big data using AI approaches are now considered essential. This paper presents diverse paradigms to subjects which deal with diverse research areas, such as image segmentation, fingerprint matching, human tracking techniques, malware distribution networks, methods of intrusion detection, digital image watermarking, wireless sensor networks, probabilistic neural networks, query processing of encrypted data, the semantic web, decision-making, software engineering, and so on.
Kim, Seong-Hoon;Roh, Myung-Il;Kim, Ki-Su;Oh, Min-Jae
Journal of Advanced Research in Ocean Engineering
/
v.3
no.1
/
pp.32-40
/
2017
Recently, the amount of data to be processed and the complexity thereof have been increasing due to the development of information and communication technology, and industry's interest in such big data is increasing day by day. In the shipbuilding and offshore industry also, there is growing interest in the effective utilization of data, since various and vast amounts of data are being generated in the process of design, production, and operation. In order to effectively utilize big data in the shipbuilding and offshore industry, it is necessary to store and process large amounts of data. In this study, it was considered efficient to apply Hadoop and R, which are mostly used in big data related research. Hadoop is a framework for storing and processing big data. It provides the Hadoop Distributed File System (HDFS) for storing big data, and the MapReduce function for processing. Meanwhile, R provides various data analysis techniques through the language and environment for statistical calculation and graphics. While Hadoop makes it is easy to handle big data, it is difficult to finely process data; and although R has advanced analysis capability, it is difficult to use to process large data. This study proposes a big data platform based on Hadoop for applications in the shipbuilding and offshore industry. The proposed platform includes the existing data of the shipyard, and makes it possible to manage and process the data. To check the applicability of the platform, it is applied to estimate the weights of offshore structure topsides. In this study, we store data of existing FPSOs in Hadoop-based Hortonworks Data Platform (HDP), and perform regression analysis using RHadoop. We evaluate the effectiveness of large data processing by RHadoop by comparing the results of regression analysis and the processing time, with the results of using the conventional weight estimation program.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.