MULIATI, Muliati;MAYAPADA, Arung Gihna;PARWATI, Ni Made Suwitri;RIDWAN, Ridwan;SALMITA, Dewi
The Journal of Asian Finance, Economics and Business
/
제8권2호
/
pp.143-150
/
2021
This study investigates and analyzes the difference in Indonesian banks' earnings quality in the pre-audit and post-audit period. This study also investigates the difference in audit quality done by public accounting firms. This study employs time series data taken from the unaudited and audited financial statements of banks listed on the Indonesia Stock Exchange in 2012-2016. Sample selection is made by using a purposive sampling method. The population of this study is 43 banks, and after checking the data for validity and reliability, the final sample size was 26 banks. Audit quality is operationalized with the size of the auditor. Earnings quality is proxied by accruals calculated using the Beaver and Engel (1996) model. The data analysis method used in this study is the paired-sample t-test and chow test. This study shows that there is no difference in earnings quality in the pre-audit and post-audit period. This study also reveals no difference in audit quality between the big four and non-big four auditors. These findings mean that independent auditors do not play a useful role in increasing the reliability of accounting information presented by management to stakeholders. Besides, this study's results do not verify the agency theory regarding auditors' role to minimize opportunistic management behavior in preparing financial statements.
현재의 국내의 많은 자영업자들이 창업의 실패를 경험하고 있다. 이러한 점에서 무분별한 창업을 줄이고, 창업의 성공률을 높이기 위해 창업 준비과정에서 명확하고 통합된 정보의 제공이 요구된다. 본 연구는 다양한 공공기관들이 분산되어 보유하고 있는 다양한 데이터를 통합한 빅데이터를 제언하고자 한다. 이를 위해 창업에서 요구되는 데이터의 유형을 분류하고 통합적 창업지원 정보시스템 구축을 위한 데이터 통합, 분석 기술, 창업자를 위한 웹 또는 스마트 서비스의 유형을 제시하고자 한다.
Purpose - This study attempted to analyze news big data in order to examine the trend of change in housework due to technological innovation and family changes. Research design, data, and methodology - News big data was collected from Bigkinds for the purpose of trend analysis. A total of 8,270 articles containing 'housework' were extracted from news articles between January 1, 1990 and December 31, 2021. 11 general daily newspapers and 8 business newspapers were selected and were analyzed by dividing them into five-year units. Result - The change of trends in housework that appeared through news big data analysis can be summarized as below. First, the tendency to regard housework as work of women or housewives is gradually weakening. Instead, the centrality of connection with double income is increasing. Second, there is a tendency to strengthen the institutional approach to evaluation of the productivity of housework. Third, the possibility of market substitution for housework is expanding. Conclusion - In the era of the 4th industrial revolution, examining the impact of technological innovation and family change on housework not only enables the prospect of an industry, but also provides implications for policies related to housework. In addition, this study is differentiated in that it contributed to expand the field of housework research previously limited to analyzing survey data.
Today, the development of innovative technologies is accompanied by changes in the industrial structure and the Big Blur phenomenon, where the boundaries in various fields are blurred. The purpose of this study was to view the Big Blur phenomenon as a big paradigm shift in the 21st century and derive environmental changes and characteristics of the Korean fashion market. The research method included an analysis of the fashion brands after 2015. Through this study, we intended to establish a framework for understanding the changes in the fashion market from the perspective of Big Blur and discuss the direction of brand marketing. The research results showed the hyperlinks, connectivity, openness, homeostasis, synchronicity, mobility, interactivity, and brand experience of online and offline spaces beyond the boundaries of virtual space and offline physical spaces such as online physical and spatial viewpoints. It also showed the characteristics. The characteristics from the socio-cultural point of view were characteristic of diversity, mixture, coexistence, composability, and pluralism beyond the traditional socio-cultural and regulatory scopes. Hip hop fashion, street fashion, unisex, genderless, androgynous fashion, and kid fashion are the backbone of the Big Blur and are becoming important factors in fashion. The characteristics of the market and economic viewpoint are prosumers that play roles both as producers and consumers. It shows the extensibility of consumers as producers, the cohesiveness of producers and consumers, the cooperation, and the interconnectivity.
정부는 능력중심사회 만들기를 핵심 국정과제로 확정하고, 국가직무능력표준(NCS, National Competency Standards) 개발 및 활용 계획을 발표하였다. 그 일환으로 정부는 2014년까지 833개 직종에 대해 국가직무능력표준을 개발했다. 그러나 빅데이터의 경우 새롭게 등장한 직무로서 아직 산업현장에서도 안정적인 직무 형태로 자리매김했다고 볼 수 없는 상황이며, 융합적이고 다학제적인 성격을 지니고 있다. 또한 주요 선진국이나 국내를 막론하고 빅데이터를 활용하기 위한 다양한 형태의 지식과 기술(skills)의 교육 및 직무역량 모형 등이 나오고 있지만, 확실히 정착된 것은 아니며 다소간의 혼선이 있는 상황이다. 이에 본 연구는 기업 및 조직이 효과적인 빅데이터 활용을 하도록 하기 위한 빅데이터 직무능력 참조 모형을 제시하고자 하는 목적 실현을 위해 네가지 직무 유형을 도출하고 이를 수행하기 위한 우리는 능력단위요소로 20개 지식과 15개 기술을 정리하였다.
The volume sub-challenge requires novel approaches, often referred to as Big Data technologies and methodologies. Data is generated constantly in an ever growing number of places and by an ever growing number of actors while a large proportion of potentially re-usable data resides within silos within institutions or companies. These are needed when conventional database technologies cannot be applied to storage and computing issues. The issue of big data has been referred to as the next frontier in computing. In this paper, we research on factors to design an organizational value chain for Big Data.
디지털화의 진전과 함께 축적된 빅데이터의 활용은 글로벌 농산업계에 파괴적 혁신을 가져오고 있다. 최근 정부는 농업 빅데이터 플랫폼 구축 및 지원조직 신설 등의 조치를 취하고 있으나 국내 농산업계는 재배생육 분야의 일부기업 외에는 빅데이터 활용이 미흡한 실정이다. 이러한 배경에서 본 연구는 빅데이터를 선도적으로 활용하여 혁신을 창출하는 주체가 되어야 할 농업벤처를 중심으로 기술, 조직, 환경의 맥락에서 빅데이터 활용의도에 영향을 미치는 요인을 규명하고 기술분야에 따른 조절효과를 확인하고자 하였다. 이에 농업기술실용화재단 A+센터의 지원을 받는 농업벤처 309개로부터 연구 데이터를 확보하여 SPSS 22.0을 이용하여 분석하였다. 연구결과, 기술적 요인 중에서는 상대적 이점과 호환성이 유의한 정(+)의 영향을 미치고, 조직적 요인 중에서는 경영층 지원이 정(+)의 영향을, 비용이 부(-)의 영향을 미치며, 환경적 요인 중에서는 정책적 지원이 정(+)의 영향을 미치는 것으로 나타났다. 기술분야의 조절효과 검증 결과, 재배생육 외 기업일수록 상대적 이점, 호환성, 경쟁자 압력 외의 모든 변수와 빅데이터 활용의도와의 관계를 완화하는 조절효과가 있는 것으로 나타났다. 이러한 결과를 통해 다음과 같은 시사점을 제시하였다. 첫째, 빅데이터 활용을 통해 농업벤처에 새로운 수익창출 및 운영효율성 제고 기회를 제공할 핵심사업을 선정하여 정책적으로 협업기회를 늘릴 필요가 있다. 둘째, 농산업 특성으로 인한 분석의 어려움을 극복할 수 있는 빅데이터 분석 솔루션 제공이 필요하다. 셋째, 농업벤처와 같은 소규모 조직에서는 최고경영층의 빅데이터 활용에 대한 높은 이해수준으로부터 출발한 조직문화 재편 의지가 선행되어야 한다. 넷째, 중소·벤처기업 수준에서 벤치마킹할 수 있는 성공사례를 발굴하고 홍보하는 것이 중요하다. 다섯째, 농업벤처 기술분야별로 핵심사업 추진과 지원사업의 우선순위를 나누어 추진하는 것이 보다 효과적일 것으로 판단된다. 마지막으로 본 연구의 한계점과 후속 연구과제를 제시하였다.
The purpose of this research is to investigate the characteristics of big data-based fashion shopping (BDFS) application, perceived usefulness, and expectation confirmation that influence the continuous usage intention of BDFS application users based on the expectation-confirmation model. A survey was conducted with female consumers in their 20s, who are living in Seoul and Incheon area and have used BDFS applications, A total of 182 responses were used for the data analysis. Five hypotheses were proposed, and regression analyses were conducted to test those hypotheses. The results indicated that the users' perceived usefulness increased with the increase of accuracy and personalization characteristics of the app and the expectation confirmation. The result suggested that it is essential to provide accurate information for users to feel useful and to develop the personalized offerings and services which can be the biggest strength of the big-data based mobile fashion store. It was also found that continuous usage intention increases with increased perceived usefulness and expectation confirmation. This result suggests that expectations can play a critical role in perceiving the usefulness of BDFS applications and the user's expectation confirmation also significantly affected the users' continuous usage intention.
Given the huge number of data produced by its users, SNS is a great source of customer insights. Since viral trends in SNS reflect customers' direct feedback, companies can draw out highly meaningful business insights when such data is effectively analyzed and managed. However, while the importance of understanding SNS big data keeps growing, the methods for analyzing atypical data such as SNS postings for business insights over product has not been well studied. This study aims to demonstrate the way to exploit topic modeling method to support marketing strategy generation and therefore leverage business process. First, we conducted topic modeling analysis for twitter data of Apple and Samsung smartphones. Then we comparatively examined the analysis results to draw meaningful market insights about each smartphone product. Finally, we draw out a strategic marketing recommendation for each smartphone brand based on the findings.
The availability of detailed data on customers' online behaviors and advances in big data analysis techniques enable us to predict consumer behaviors. In the past, researchers have built purchase prediction models by analyzing clickstream data; however, these clickstream-based prediction models have had several limitations. In this study, we propose a new method for purchase prediction that combines information theory with machine learning techniques. Clickstreams from 5,000 panel members and data on their purchases of electronics, fashion, and cosmetics products were analyzed. Clickstreams were summarized using the 'entropy' concept from information theory, while 'random forests' method was applied to build prediction models. The results show that prediction accuracy of this new method ranges from 0.56 to 0.83, which is a significant improvement over values for clickstream-based prediction models presented in the past. The results indicate further that consumers' information search behaviors differ significantly across product categories.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.