LEE, Ki Seok;CHOI, Youngjin;LEE, Kyung-cheun;SHIN, Yoonseok;YOO, Wi Sung
International conference on construction engineering and project management
/
2022.06a
/
pp.375-381
/
2022
Safety accidents are of concern during construction projects, even given the recent innovations in digital technologies. These projects remain focused on overcoming specific and limited applications on construction sites. For this reason, the development of an inclusive safety management system has become crucial. This study aims to build a Big Data platform to inform decisions on how to proactively eliminate worker hazards on construction sites. The platform consists of about 100,000 real records and a real-time monitored database featuring various safety indices, such as workers' altitudes, heart rates, and fatigability during construction, which are determined through various wearable devices. The data types are customized and integrated by a research team in accordance with the characteristics of a specific project using hypertext transfer protocol (HTTP). The results can be helpful as efficient tools to ensure successful safety management in complex construction situations. This study is expected to provide three significant contributions to the field, including real-time fatigability analysis and tracking of workers on-site; providing early GPS-based warnings to workers who might be accessing dangerous spaces or places; and monitoring the workers' health indices, based on details from 100,000 cases.
The modern large-scale surveys and state-of-the-art cosmological simulations produce various kinds of big data composed of millions and billions of galaxies. Inevitably, we need to adopt modern Big Data platforms to properly handle such large-scale data sets. In my talk, I will briefly introduce the de facto standard of modern Big Data platform, Apache Spark, and present some examples to demonstrate how Apache Spark can be utilized for solving data-driven astronomical problems.
In order to utilize big data in general industrial sites, the structured big data collected from facilities, processes, and environments of industrial sites must first be processed and stored, and in the case of unstructured data, it must be stored as unstructured data or converted into structured data and stored in a database. In this paper, we study a method of collecting big data based on open IoT standards that can converge and utilize measurement information, environmental information of industrial sites to collect big data. The platform for collecting big data proposed in this paper is capable of collecting, processing, and storing big data at industrial sites to process real-time sensing information. For processing and analyzing data according to the purpose of the stored industrial, various big data technologies also can be applied.
Journal of the Korea Society of Computer and Information
/
v.24
no.12
/
pp.67-74
/
2019
In this paper, we design and implement an analytics platform based on bulk cargo DTG data for crackdown on overloaded trucks. DTG(digital tachograph) is a device that stores the driving record in real time; that is, it is a device that records the vehicle driving related data such as GPS, speed, RPM, braking, and moving distance of the vehicle in one second unit. The fast processing of DTG data is essential for finding vehicle driving patterns and analytics. In particular, a big data analytics platform is required for preprocessing and converting large amounts of DTG data. In this paper, we implement a big data analytics framework based on cargo DTG data using Spark, which is an open source-based big data framework for crackdown on overloaded trucks. As the result of implementation, our proposed platform converts real large cargo DTG data sets into GIS data, and these are visualized by a map. It also recommends crackdown points.
Recently, a situation in which a specific content service is impossible worldwide has occurred due to a failure of the platform service and a significant social and economic problem has been caused in the global service market. In order to secure the stability of platform services, intelligent platform operation management is required. In this study, big data flow management(BDFM) and implementation method were proposed to quickly detect to abnormal service status in the platform operation environment. As a result of analyzing, BDFM technique improved the characteristics of abnormal failure detection by more than 30% compared to the traditional NMS. The big data flow management method has the advantage of being able to quickly detect platform system failures and abnormal service conditions, and it is expected that when connected with AI-based technology, platform management is performed intelligently and the ability to prevent and preserve failures can be greatly improved.
International journal of advanced smart convergence
/
v.12
no.2
/
pp.34-46
/
2023
A growing number of large scale knowledge graphs raises several issues how knowledge graph data can be organized, discovered, and integrated efficiently. We present a novel semantic-based mashup platform for contents convergence which consists of acquisition, RDF storage, ontology learning, and mashup subsystems. This platform servers a basis for developing other more sophisticated applications required in the area of knowledge big data. Moreover, this paper proposes an entity matching method using graph convolutional network techniques as a preliminary work for automatic classification and discovery on knowledge big data. Using real DBP15K and SRPRS datasets, the performance of our method is compared with some existing entity matching methods. The experimental results show that the proposed method outperforms existing methods due to its ability to increase accuracy and reduce training time.
International Journal of Advanced Culture Technology
/
v.12
no.2
/
pp.221-226
/
2024
This study used text mining, a big data analysis technique, to explore XR trends in South Korea. For this research, I utilized a big data platform called BigKinds. I collected data focusing on the keyword 'XR', spanning approximately 14 years from 2010 to 2024. The gathered data underwent a cleansing process and was analyzed in three ways: keyword trend analysis, relational analysis, and word cloud. The analysis identified the emergence and most active discussion periods of XR, with XR devices and manufacturers emerging as key keywords.
Journal of the Korean Institute of Intelligent Systems
/
v.23
no.5
/
pp.400-405
/
2013
The purpose of this study is to develop a composite platform for knowledge extractions, visualizations, and inference. Generally, the big data sets were frequently used in the healthcare and medical area. To help the knowledge managers/users working in the field, this study is focused on knowledge management (KM) based on Data Mining (DM), Knowledge Distribution Map (KDM), Decision Tree (DT), RDBMS, and SQL-inference. The proposed mechanism is composed of five key processes. Firstly, in Knowledge Parsing, it extracts logical rules from a big data set by using DM technology. Then it transforms the rules into RDB tables. Secondly, through Knowledge Maintenance, it refines and manages the knowledge to be ready for the computing of knowledge distributions. Thirdly, in Knowledge Distribution process, we can see the knowledge distributions by using the DT mechanism.Fourthly, in Knowledge Hierarchy, the platform shows the hierarchy of the knowledge. Finally, in Inference, it deduce the conclusions by using the given facts and data.This approach presents the advantages of diversity in knowledge representations and inference to improve the quality of computer-based medical diagnosis.
Demand for big data analysis and AI developers is increasing, but there is a lack of an education base to supply them. In this paper, by developing a cloud-based artificial intelligence education platform, the goal was to establish an environment in which practical practical training can be efficiently learned at low cost at educational institutions and IT companies. The development of the education platform was carried out by planning scenarios for each user, architecture design, screen design, implementation of development functions, and hardware construction. This training platform consists of a containerized workload, service management platform, lecture and development platform for instructors and students, and secured cloud stability through real-time alarm system and age test, CI/CD development environment, and reliability through docker image distribution. The development of this education platform is expected to expand opportunities to enter new businesses in the education field and contribute to fostering working-level human resources in the AI and big data fields.
This study aimed to grasp the perceptions and trends in fashion platforms and fashion smart factories using big data analysis. As a research method, big data analysis, fashion platform, and smart factory were identified through literature and prior studies, and text mining analysis and network analysis were performed after collecting text from the web environment between April 2019 and April 2021. After data purification with Textom, the words of fashion platform (1,0591 pieces) and fashion smart factory (9750 pieces) were used for analysis. Key words were derived, the frequency of appearance was calculated, and the results were visualized in word cloud and N-gram. The top 70 words by frequency of appearance were used to generate a matrix, structural equivalence analysis was performed, and the results were displayed using network visualization and dendrograms. The collected data revealed that smart factory had high social issues, but consumer interest and academic research were insufficient, and the amount and frequency of related words on the fashion platform were both high. As a result of structural equalization analysis, it was found that fashion platforms with strong connectivity between clusters are creating new competitiveness with service platforms that add sharing, manufacturing, and curation functions, and fashion smart factories can expect future value to grow together, according to digital technology innovation and platforms. This study can serve as a foundation for future research topics related to fashion platforms and smart factories.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.