• Title/Summary/Keyword: Big Data Patent

Search Result 66, Processing Time 0.034 seconds

Data Pre-processing for Create IPC Classifiers for Patent Documents (특허문서의 IPC 분류기 생성을 위한 데이터 전처리)

  • Su-Hyun Park;Jin Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.542-543
    • /
    • 2024
  • 특허심사절차는 짧지 않은 과정으로 이루어져 있는데, 현재 모든 절차가 사람이 직접 관여하여 진행되고 있다. 특허심사절차의 효율적 시간 분배를 위해, 특허문서 분류 과정의 자동화 처리 필요성을 느끼게 되었다. 따라서, 본 논문에서는 해당 분류기 생성을 위한 데이터의 전처리 과정을 다루었다.

A Technology Analysis Model using Dynamic Time Warping

  • Choi, JunHyeog;Jun, SungHae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.2
    • /
    • pp.113-120
    • /
    • 2015
  • Technology analysis is to analyze technological data such as patent and paper for a given technology field. From the results of technology analysis, we can get novel knowledge for R&D planing and management. For the technology analysis, we can use diverse methods of statistics. Time series analysis is one of efficient approaches for technology analysis, because most technologies have researched and developed depended on time. So many technological data are time series. Time series data are occurred through time. In this paper, we propose a methodology of technology forecasting using the dynamic time warping (DTW) of time series analysis. To illustrate how to apply our methodology to real problem, we perform a case study of patent documents in target technology field. This research will contribute to R&D planning and technology management.

Keyword Data Analysis Using Bayesian Conjugate Prior Distribution (베이지안 공액 사전분포를 이용한 키워드 데이터 분석)

  • Jun, Sunghae
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.6
    • /
    • pp.1-8
    • /
    • 2020
  • The use of text data in big data analytics has been increased. So, much research on methods for text data analysis has been performed. In this paper, we study Bayesian learning based on conjugate prior for analyzing keyword data extracted from text big data. Bayesian statistics provides learning process for updating parameters when new data is added to existing data. This is an efficient process in big data environment, because a large amount of data is created and added over time in big data platform. In order to show the performance and applicability of proposed method, we carry out a case study by analyzing the keyword data from real patent document data.

Technology Clustering Using Textual Information of Reference Titles in Scientific Paper (과학기술 논문의 참고문헌 텍스트 정보를 활용한 기술의 군집화)

  • Park, Inchae;Kim, Songhee;Yoon, Byungun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.25-32
    • /
    • 2020
  • Data on patent and scientific paper is considered as a useful information source for analyzing technological information and has been widely utilized. Technology big data is analyzed in various ways to identify the latest technological trends and predict future promising technologies. Clustering is one of the ways to discover new features by creating groups from technology big data. Patent includes refined bibliographic information such as patent classification code whereas scientific paper does not have appropriate bibliographic information for clustering. This research proposes a new approach for clustering data of scientific paper by utilizing reference titles in each scientific paper. In this approach, the reference titles are considered as textual information because each reference consists of the title of the paper that represents the core content of the paper. We collected the scientific paper data, extracted the title of the reference, and conducted clustering by measuring the text-based similarity. The results from the proposed approach are compared with the results using existing methodologies that one is the approach utilizing textual information from titles and abstracts and the other one is a citation-based approach. The suggested approach in this paper shows statistically significant difference compared to the existing approaches and it shows better clustering performance. The proposed approach will be considered as a useful method for clustering scientific papers.

A study on trends and predictions through analysis of linkage analysis based on big data between autonomous driving and spatial information (자율주행과 공간정보의 빅데이터 기반 연계성 분석을 통한 동향 및 예측에 관한 연구)

  • Cho, Kuk;Lee, Jong-Min;Kim, Jong Seo;Min, Guy Sik
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.101-115
    • /
    • 2020
  • In this paper, big data analysis method was used to find out global trends in autonomous driving and to derive activate spatial information services. The applied big data was used in conjunction with news articles and patent document in order to analysis trend in news article and patents document data in spatial information. In this paper, big data was created and key words were extracted by using LDA (Latent Dirichlet Allocation) based on the topic model in major news on autonomous driving. In addition, Analysis of spatial information and connectivity, global technology trend analysis, and trend analysis and prediction in the spatial information field were conducted by using WordNet applied based on key words of patent information. This paper was proposed a big data analysis method for predicting a trend and future through the analysis of the connection between the autonomous driving field and spatial information. In future, as a global trend of spatial information in autonomous driving, platform alliances, business partnerships, mergers and acquisitions, joint venture establishment, standardization and technology development were derived through big data analysis.

Patent Technology Trends of Oral Health: Application of Text Mining

  • Hee-Kyeong Bak;Yong-Hwan Kim;Han-Na Kim
    • Journal of dental hygiene science
    • /
    • v.24 no.1
    • /
    • pp.9-21
    • /
    • 2024
  • Background: The purpose of this study was to utilize text network analysis and topic modeling to identify interconnected relationships among keywords present in patent information related to oral health, and subsequently extract latent topics and visualize them. By examining key keywords and specific subjects, this study sought to comprehend the technological trends in oral health-related innovations. Furthermore, it aims to serve as foundational material, suggesting directions for technological advancement in dentistry and dental hygiene. Methods: The data utilized in this study consisted of information registered over a 20-year period until July 31st, 2023, obtained from the patent information retrieval service, KIPRIS. A total of 6,865 patent titles related to keywords, such as "dentistry," "teeth," and "oral health," were collected through the searches. The research tools included a custom-designed program coded specifically for the research objectives based on Python 3.10. This program was used for keyword frequency analysis, semantic network analysis, and implementation of Latent Dirichlet Allocation for topic modeling. Results: Upon analyzing the centrality of connections among the top 50 frequently occurring words, "method," "tooth," and "manufacturing" displayed the highest centrality, while "active ingredient" had the lowest. Regarding topic modeling outcomes, the "implant" topic constituted the largest share at 22.0%, while topics concerning "devices and materials for oral health" and "toothbrushes and oral care" exhibited the lowest proportions at 5.5% each. Conclusion: Technologies concerning methods and implants are continually being researched in patents related to oral health, while there is comparatively less technological development in devices and materials for oral health. This study is expected to be a valuable resource for uncovering potential themes from a large volume of patent titles and suggesting research directions.

A study on the efficient extraction method of patent search key words using big data analysis tool R (빅데이터 분석 도구 R을 활용한 효율적인 특허 검색어 추출에 관한 연구)

  • Jang, Jung-Hwan;Zhang, Jing-Lun;Li, Lian;Gwon, Hyeok-Cheol;Lee, Chang-Ho
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2013.11a
    • /
    • pp.387-391
    • /
    • 2013
  • 디지털 기술의 발달로 세계가 정보 및 지식이 주도하는 사회로 급변하고, 지식 재산권의 발전이 급속하게 진행되면서, 각 기업 및 국가들은 그들의 경쟁력을 키우기 위해 지식재산권에 대한 중요성을 강조하고 있다. 이와 같이 지식재산권의 중요성이 강조되는 현실에서 지식재산권의 확보는 기업의 경쟁력을 좌우하는 요소라 할 수 있다. 따라서 본 논문에서는 빅데이터 분석 도구인 R을 이용하여 빠른 시간 안에 사용자가 목적으로 하고 있는 특허검색 결과를 효율적으로 도출할 수 있는 검색어 추출에 관한 연구를 진행하였다. 이를 위해 다섯 단계의 특허 검색 프로세스를 제안하였고 프로그램으로 구현하여 검색목적에 맞는 특허의 검색에 필요한 시간을 대폭 단축시키면서 목표로 하는 특허 검색을 효율적으로 할 수 있었다.

  • PDF

Patent Document Classification by Using Hierarchical Attention Network (계층적 주의 네트워크를 활용한 특허 문서 분류)

  • Jang, Hyuncheol;Han, Donghee;Ryu, Teaseon;Jang, Hyungkuk;Lim, HeuiSeok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.369-372
    • /
    • 2018
  • 최근 지식경영에 있어 특허를 통한 지식재산권 확보는 기업 운영에 큰 영향을 주는 요소이다. 성공적인 특허 확보를 위해서, 먼저 변화하는 특허 분류 제계를 이해하고, 방대한 특허 정보 데이터를 빠르고 신속하게 특허 분류 체계에 따라 분류화 시킬 필요가 있다. 본 연구에서는 머신 러닝 기술 중에서도 계층적 주의 네트워크를 활용하여 특허 자료의 초록을 학습시켜 분류를 할 수 있는 방법을 제안한다. 그리고 본 연구에서는 제안된 계층적 주의 네트워크의 성능을 검증하기 위해 수정된 입력데이터와 다른 워드 임베딩을 활용하여 진행하였다. 이를 통하여 특허 문서 분류에 활용하려는 계층적 주의 네트워크의 성능과 특허 문서 분류 활용화 방안을 보여주고자 한다. 본 연구의 결과는 많은 기업 지식경영에서 실용적으로 활용할 수 있도록 지식경영 연구자, 기업의 관리자 및 실무자에게 유용한 특허분류기법에 관한 이론적 실무적 활용 방안을 제시한다.

AI Technology Analysis using Partial Least Square Regression

  • Choi, JunHyeog;Jun, Sunghae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.109-115
    • /
    • 2020
  • In this paper, we propose an artificial intelligence(AI) technology analysis using partial least square(PLS) regression model. AI technology is now affecting most areas of our society. So, it is necessary to understand this technology. To analyze the AI technology, we collect the patent documents related to AI from the patent databases in the world. We extract AI technology keywords from the patent documents by text mining techniques. In addition, we analyze the AI keyword data by PLS regression model. This regression model is based on the technique of partial least squares used in the advanced analyses such as bioinformatics, social science, and engineering. To show the performance of our proposed method, we make experiments using AI patent documents, and we illustrate how our research can be applied to real problems. This paper is applicable not only to AI technology but also to other technological fields. This also contributes to understanding other various technologies by PLS regression analysis.

Pre-processing for IPC Classification of Patent Documents (특허문서의 IPC 분류를 위한 데이터 변환 및 통합)

  • Su-Hyun Park;Jin Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.367-368
    • /
    • 2023
  • 4차 산업혁명으로 다양한 기술과 아이디어가 생겨나고 있고, 이를 보호하기 위한 특허는 그 등록 건수가 매년 증가하는 추세이다. 그러나 현재 특허문서를 분류하는 과정을 수동으로 진행하고 있기에 이를 자동으로 진행할 수 있는 분류기를 생성할 필요를 느꼈고, 본 논문에서는 특허문서를 분류기에 적용할 데이터의 전처리 과정 중 데이터 변환과 통합 과정을 다루었다.