Proceedings of the Korea Information Processing Society Conference
/
2024.05a
/
pp.542-543
/
2024
특허심사절차는 짧지 않은 과정으로 이루어져 있는데, 현재 모든 절차가 사람이 직접 관여하여 진행되고 있다. 특허심사절차의 효율적 시간 분배를 위해, 특허문서 분류 과정의 자동화 처리 필요성을 느끼게 되었다. 따라서, 본 논문에서는 해당 분류기 생성을 위한 데이터의 전처리 과정을 다루었다.
Journal of the Korea Society of Computer and Information
/
v.20
no.2
/
pp.113-120
/
2015
Technology analysis is to analyze technological data such as patent and paper for a given technology field. From the results of technology analysis, we can get novel knowledge for R&D planing and management. For the technology analysis, we can use diverse methods of statistics. Time series analysis is one of efficient approaches for technology analysis, because most technologies have researched and developed depended on time. So many technological data are time series. Time series data are occurred through time. In this paper, we propose a methodology of technology forecasting using the dynamic time warping (DTW) of time series analysis. To illustrate how to apply our methodology to real problem, we perform a case study of patent documents in target technology field. This research will contribute to R&D planning and technology management.
The use of text data in big data analytics has been increased. So, much research on methods for text data analysis has been performed. In this paper, we study Bayesian learning based on conjugate prior for analyzing keyword data extracted from text big data. Bayesian statistics provides learning process for updating parameters when new data is added to existing data. This is an efficient process in big data environment, because a large amount of data is created and added over time in big data platform. In order to show the performance and applicability of proposed method, we carry out a case study by analyzing the keyword data from real patent document data.
Journal of Korean Society of Industrial and Systems Engineering
/
v.43
no.2
/
pp.25-32
/
2020
Data on patent and scientific paper is considered as a useful information source for analyzing technological information and has been widely utilized. Technology big data is analyzed in various ways to identify the latest technological trends and predict future promising technologies. Clustering is one of the ways to discover new features by creating groups from technology big data. Patent includes refined bibliographic information such as patent classification code whereas scientific paper does not have appropriate bibliographic information for clustering. This research proposes a new approach for clustering data of scientific paper by utilizing reference titles in each scientific paper. In this approach, the reference titles are considered as textual information because each reference consists of the title of the paper that represents the core content of the paper. We collected the scientific paper data, extracted the title of the reference, and conducted clustering by measuring the text-based similarity. The results from the proposed approach are compared with the results using existing methodologies that one is the approach utilizing textual information from titles and abstracts and the other one is a citation-based approach. The suggested approach in this paper shows statistically significant difference compared to the existing approaches and it shows better clustering performance. The proposed approach will be considered as a useful method for clustering scientific papers.
In this paper, big data analysis method was used to find out global trends in autonomous driving and to derive activate spatial information services. The applied big data was used in conjunction with news articles and patent document in order to analysis trend in news article and patents document data in spatial information. In this paper, big data was created and key words were extracted by using LDA (Latent Dirichlet Allocation) based on the topic model in major news on autonomous driving. In addition, Analysis of spatial information and connectivity, global technology trend analysis, and trend analysis and prediction in the spatial information field were conducted by using WordNet applied based on key words of patent information. This paper was proposed a big data analysis method for predicting a trend and future through the analysis of the connection between the autonomous driving field and spatial information. In future, as a global trend of spatial information in autonomous driving, platform alliances, business partnerships, mergers and acquisitions, joint venture establishment, standardization and technology development were derived through big data analysis.
Background: The purpose of this study was to utilize text network analysis and topic modeling to identify interconnected relationships among keywords present in patent information related to oral health, and subsequently extract latent topics and visualize them. By examining key keywords and specific subjects, this study sought to comprehend the technological trends in oral health-related innovations. Furthermore, it aims to serve as foundational material, suggesting directions for technological advancement in dentistry and dental hygiene. Methods: The data utilized in this study consisted of information registered over a 20-year period until July 31st, 2023, obtained from the patent information retrieval service, KIPRIS. A total of 6,865 patent titles related to keywords, such as "dentistry," "teeth," and "oral health," were collected through the searches. The research tools included a custom-designed program coded specifically for the research objectives based on Python 3.10. This program was used for keyword frequency analysis, semantic network analysis, and implementation of Latent Dirichlet Allocation for topic modeling. Results: Upon analyzing the centrality of connections among the top 50 frequently occurring words, "method," "tooth," and "manufacturing" displayed the highest centrality, while "active ingredient" had the lowest. Regarding topic modeling outcomes, the "implant" topic constituted the largest share at 22.0%, while topics concerning "devices and materials for oral health" and "toothbrushes and oral care" exhibited the lowest proportions at 5.5% each. Conclusion: Technologies concerning methods and implants are continually being researched in patents related to oral health, while there is comparatively less technological development in devices and materials for oral health. This study is expected to be a valuable resource for uncovering potential themes from a large volume of patent titles and suggesting research directions.
Proceedings of the Safety Management and Science Conference
/
2013.11a
/
pp.387-391
/
2013
디지털 기술의 발달로 세계가 정보 및 지식이 주도하는 사회로 급변하고, 지식 재산권의 발전이 급속하게 진행되면서, 각 기업 및 국가들은 그들의 경쟁력을 키우기 위해 지식재산권에 대한 중요성을 강조하고 있다. 이와 같이 지식재산권의 중요성이 강조되는 현실에서 지식재산권의 확보는 기업의 경쟁력을 좌우하는 요소라 할 수 있다. 따라서 본 논문에서는 빅데이터 분석 도구인 R을 이용하여 빠른 시간 안에 사용자가 목적으로 하고 있는 특허검색 결과를 효율적으로 도출할 수 있는 검색어 추출에 관한 연구를 진행하였다. 이를 위해 다섯 단계의 특허 검색 프로세스를 제안하였고 프로그램으로 구현하여 검색목적에 맞는 특허의 검색에 필요한 시간을 대폭 단축시키면서 목표로 하는 특허 검색을 효율적으로 할 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2018.05a
/
pp.369-372
/
2018
최근 지식경영에 있어 특허를 통한 지식재산권 확보는 기업 운영에 큰 영향을 주는 요소이다. 성공적인 특허 확보를 위해서, 먼저 변화하는 특허 분류 제계를 이해하고, 방대한 특허 정보 데이터를 빠르고 신속하게 특허 분류 체계에 따라 분류화 시킬 필요가 있다. 본 연구에서는 머신 러닝 기술 중에서도 계층적 주의 네트워크를 활용하여 특허 자료의 초록을 학습시켜 분류를 할 수 있는 방법을 제안한다. 그리고 본 연구에서는 제안된 계층적 주의 네트워크의 성능을 검증하기 위해 수정된 입력데이터와 다른 워드 임베딩을 활용하여 진행하였다. 이를 통하여 특허 문서 분류에 활용하려는 계층적 주의 네트워크의 성능과 특허 문서 분류 활용화 방안을 보여주고자 한다. 본 연구의 결과는 많은 기업 지식경영에서 실용적으로 활용할 수 있도록 지식경영 연구자, 기업의 관리자 및 실무자에게 유용한 특허분류기법에 관한 이론적 실무적 활용 방안을 제시한다.
Journal of the Korea Society of Computer and Information
/
v.25
no.3
/
pp.109-115
/
2020
In this paper, we propose an artificial intelligence(AI) technology analysis using partial least square(PLS) regression model. AI technology is now affecting most areas of our society. So, it is necessary to understand this technology. To analyze the AI technology, we collect the patent documents related to AI from the patent databases in the world. We extract AI technology keywords from the patent documents by text mining techniques. In addition, we analyze the AI keyword data by PLS regression model. This regression model is based on the technique of partial least squares used in the advanced analyses such as bioinformatics, social science, and engineering. To show the performance of our proposed method, we make experiments using AI patent documents, and we illustrate how our research can be applied to real problems. This paper is applicable not only to AI technology but also to other technological fields. This also contributes to understanding other various technologies by PLS regression analysis.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.367-368
/
2023
4차 산업혁명으로 다양한 기술과 아이디어가 생겨나고 있고, 이를 보호하기 위한 특허는 그 등록 건수가 매년 증가하는 추세이다. 그러나 현재 특허문서를 분류하는 과정을 수동으로 진행하고 있기에 이를 자동으로 진행할 수 있는 분류기를 생성할 필요를 느꼈고, 본 논문에서는 특허문서를 분류기에 적용할 데이터의 전처리 과정 중 데이터 변환과 통합 과정을 다루었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.