• Title/Summary/Keyword: Big Data Analysis Technique

Search Result 265, Processing Time 0.022 seconds

Development of Early Forecasting System using GIS and Prediction Model related to the Cyanobacterial Blooming in the Daecheong Reservoir of Korea (예보모델과 GIS를 기반한 대청호의 남조류 발생에 대한 조기예보시스템 개발)

  • Kim, Man-Kyu;Park, Jong-Chul;Kim, Kwang-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.2
    • /
    • pp.91-102
    • /
    • 2007
  • To anticipate and respond to harmful algae produced in a big artificial lake like Daecheong reservoir, development of a regional analysis computer system using GIS or RS technique is needed in addition to biological and chemical research. The purpose of this study is to develop a cyanobacterial blooming prediction model to prevent harmful algae produced in Daecheong reservoir and construct an early forecasting system based on GIS. For this purpose this paper examines previous studies related to the relationship between cyanobacteria and environmental factors in Daecheong reservoir and selects precipitation and air temperature as two important environmental factors for the development of cyanobacterial blooming prediction model. Data used in this study are water quality and weather data for three water regions in Daecheong reservoir between 2000 and 2004. Based on qualitative correlation analysis between cyanobacteria and environmental factors, this paper presents a Rump model which enables us to predict cyanobacteria in water regions of Daecheong reservoir. Under this model the prediction of initial occurrence time and growth period of cyanobacteria are possible. The model is also applied to the GIS-based early forecasting system for cyanobacteria, and finally a GIS which can predict cyanobacteria produced in Daecheong reservoir and can manage the related data is developed.

  • PDF

Implementation of DTW-kNN-based Decision Support System for Discriminating Emerging Technologies (DTW-kNN 기반의 유망 기술 식별을 위한 의사결정 지원 시스템 구현 방안)

  • Jeong, Do-Heon;Park, Ju-Yeon
    • Journal of Industrial Convergence
    • /
    • v.20 no.8
    • /
    • pp.77-84
    • /
    • 2022
  • This study aims to present a method for implementing a decision support system that can be used for selecting emerging technologies by applying a machine learning-based automatic classification technique. To conduct the research, the architecture of the entire system was built and detailed research steps were conducted. First, emerging technology candidate items were selected and trend data was automatically generated using a big data system. After defining the conceptual model and pattern classification structure of technological development, an efficient machine learning method was presented through an automatic classification experiment. Finally, the analysis results of the system were interpreted and methods for utilization were derived. In a DTW-kNN-based classification experiment that combines the Dynamic Time Warping(DTW) method and the k-Nearest Neighbors(kNN) classification model proposed in this study, the identification performance was up to 87.7%, and particularly in the 'eventual' section where the trend highly fluctuates, the maximum performance difference was 39.4% points compared to the Euclidean Distance(ED) algorithm. In addition, through the analysis results presented by the system, it was confirmed that this decision support system can be effectively utilized in the process of automatically classifying and filtering by type with a large amount of trend data.

Analysis of trade newspapers related to dental hygienists as healthcare professionals using language analysis technique: using R program (언어분석기법을 활용한 치과위생사의 의료인화 관련 신문기사 분석: R 프로그램 이용)

  • Kim, Song-Yi;Yoon, Ga-Rim;Kang, Dong-Hyun;Kim, Su-Jin;Lee, Si-Eun;Jang, Soo-Bin;Hong, Seong-Min;Hwang, Ji-Hoon;Kim, Nam-Hee
    • Journal of Korean society of Dental Hygiene
    • /
    • v.17 no.5
    • /
    • pp.921-930
    • /
    • 2017
  • Objectives: The purposes of this study were to analyze the trade newspapers related to 'recognition of the dental hygienist as the healthcare professional' using R program and to identify opinions of groups concerned with dental hygienists. Methods: This study was designed with contents analysis and cross-sectional. The subjects of the study were the articles for the last three years in medical and dental newspapers about the recognition of the dental hygienist as the healthcare professional. The collected articles were categorized and classified for each group's opinions about the issue. The key words were extracted according to the priorities of the opinions of agreement and disagreement. They were visualized after frequency analysis using R, a big data analysis program. Results: A total of 237 newspaper articles were extracted among 270 ones containing opinions. 245 were positive opinions and 25 were negatives. The main key words of the agreement were 'Amendment of Medical Law', 'Medical Practice', and 'Legal Guarantee of the Practice'. Advocates addressed that the issues should be resolved with the amendment of the law, as dental hygienists are not guaranteed to work based on the current law although they are actually doing the medical practices. Main key words of disagreement were 'Legal Guarantee of the Practice', 'Revision of Medical Technician Law', and 'Review of Job Type'. They described that the problem can be resolved by revising medical technicians act, and it needs to consider as job types of all healthcare professional. Conclusions: In the group who showed the positive opinions, it is possible to utilize measures such as promoting the cooperation of dental hygienists and developing public consensus through publicity.

Analysis of the Effects of E-commerce User Ratings and Review Helfulness on Performance Improvement of Product Recommender System (E-커머스 사용자의 평점과 리뷰 유용성이 상품 추천 시스템의 성능 향상에 미치는 영향 분석)

  • FAN, LIU;Lee, Byunghyun;Choi, Ilyoung;Jeong, Jaeho;Kim, Jaekyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.311-328
    • /
    • 2022
  • Because of the spread of smartphones due to the development of information and communication technology, online shopping mall services can be used on computers and mobile devices. As a result, the number of users using the online shopping mall service increases rapidly, and the types of products traded are also growing. Therefore, to maximize profits, companies need to provide information that may interest users. To this end, the recommendation system presents necessary information or products to the user based on the user's past behavioral data or behavioral purchase records. Representative overseas companies that currently provide recommendation services include Netflix, Amazon, and YouTube. These companies support users' purchase decisions by recommending products to users using ratings, purchase records, and clickstream data that users give to the items. In addition, users refer to the ratings left by other users about the product before buying a product. Most users tend to provide ratings only to products they are satisfied with, and the higher the rating, the higher the purchase intention. And recently, e-commerce sites have provided users with the ability to vote on whether product reviews are helpful. Through this, the user makes a purchase decision by referring to reviews and ratings of products judged to be beneficial. Therefore, in this study, the correlation between the product rating and the helpful information of the review is identified. The valuable data of the evaluation is reflected in the recommendation system to check the recommendation performance. In addition, we want to compare the results of skipping all the ratings in the traditional collaborative filtering technique with the recommended performance results that reflect only the 4 and 5 ratings. For this purpose, electronic product data collected from Amazon was used in this study, and the experimental results confirmed a correlation between ratings and review usefulness information. In addition, as a result of comparing the recommendation performance by reflecting all the ratings and only the 4 and 5 points in the recommendation system, the recommendation performance of remembering only the 4 and 5 points in the recommendation system was higher. In addition, as a result of reflecting review usefulness information in the recommendation system, it was confirmed that the more valuable the review, the higher the recommendation performance. Therefore, these experimental results are expected to improve the performance of personalized recommendation services in the future and provide implications for e-commerce sites.

The development of symmetrically and attributably pure confidence in association rule mining (연관성 규칙에서 활용 가능한 대칭적 기여 순수 신뢰도의 개발)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.601-609
    • /
    • 2014
  • The most widely used data mining technique for big data analysis is to generate meaningful association rules. This method has been used to find the relationship between set of items based on the association criteria such as support, confidence, lift, etc. Among them, confidence is the most frequently used, but it has the drawback that we can not know the direction of association by it. The attributably pure confidence was developed to compensate for this drawback, but the value was changed by the position of two item sets. In this paper, we propose four symmetrically and attributably pure confidence measures to compensate the shortcomings of confidence and the attributably pure confidence. And then we prove three conditions of interestingness measure by Piatetsky-Shapiro, and comparative studies with confidence, attributably pure confidence, and four symmetrically and attributably pure confidence measures are shown by numerical examples. The results show that the symmetrically and attributably pure confidence measures are better than confidence and the attributably pure confidence. Also the measure NSAPis found to be the best among these four symmetrically and attributably pure confidence measures.

An Analysis of the Relationship between Public Opinion on Social Bigdata and Results after Implementation of Public Policies: A Case Study in 'Welfare' Policy (소셜 빅데이터 기반 공공정책 국민의견 수렴과 정책 시행 이후 결과 관계 분석: '복지' 정책 사례를 중심으로)

  • Kim, Tae-Young;Kim, Yong;Oh, Hyo-Jung
    • Journal of Digital Convergence
    • /
    • v.15 no.3
    • /
    • pp.17-25
    • /
    • 2017
  • Horizon scanning that one of the methods for future prediction is adaptable way of establishing the policy strategy based on big data. This study aims to understand the social problems scientifically utilized horizon scanning technique, and contribute to public policy formulation based on scanning analysis. In this paper, we proposed a public opinion framework for public policy based on social bigdata, and then confirmed the feasibility this framework by analysis of the relationship between public opinion and results after implementation of public policy. Consequently, based on the analysis, we also drew implications of policy formulation about 'free childcare for under 5-years of age' as an object of study. The method that collects public opinion is very important to effective policy establishment and make contribution to constructing national response systems for social development.

A Study on the Research Trends in Fintech using Topic Modeling (토픽 모델링을 이용한 핀테크 기술 동향 분석)

  • Kim, TaeKyung;Choi, HoeRyeon;Lee, HongChul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.670-681
    • /
    • 2016
  • Recently, based on Internet and mobile environments, the Fintech industry that fuses finance and IT together has been rapidly growing and Fintech services armed with simplicity and convenience have been leading the conversion of all financial services into online and mobile services. However, despite the rapid growth of the Fintech industry, few studies have classified Fintech technologies into detailed technologies, analyzed the technology development trends of major market countries, and supported technology planning. In this respect, using Fintech technological data in the form of unstructured data, the present study extracts and defines detailed Fintech technologies through the topic modeling technique. Thereafter, hot and cold topics of the derived detailed Fintech technologies are identified to determine the trend of Fintech technologies. In addition, the trends of technology development in the USA, South Korea, and China, which are major market countries for major Fintech industrial technologies, are analyzed. Finally, through the analyses of networks between detailed Fintech technologies, linkages between the technologies are examined. The trends of Fintech industrial technologies identified in the present study are expected to be effectively utilized for the establishment of policies in the area of the Fintech industry and Fintech related enterprises' establishment of technology strategies.

Improvement Issues of Personal Information Protection Laws through Meta-Analysis (메타분석을 통한 개인정보보호법의 개선과제)

  • Cho, Myunggeun;Lee, Hwansoo
    • Journal of Digital Convergence
    • /
    • v.15 no.9
    • /
    • pp.1-14
    • /
    • 2017
  • As we enter the era of big data, the value of personal information is becoming ever more important. However, personal information protection laws in Korea have several issues. Furthermore, existing research are limited in their ability to facilitate a comprehensive understanding of measures to improve personal information protection laws. Accordingly, this study analyzes improvements to be made in the current personal information protection laws based on existing research. A total of 39 research articles discussing the problems of the personal information protection law were selected and analyzed by applying the meta - analysis technique. According to the results, the various issues such as the meaning and scope of personal information, the role and obligations of relevant parties, provision of personal information to third parties, and redundant and imbalanced regulations in special acts in each field. that exist in the current personal information protection laws were confirmed. This study contributes to the improvement of inconsistency between information protection laws and related special laws in each field in practice. Academically, it will contribute to understanding the problems of th law from the macro perspective and suggesting the integrated improvement ways of the law.

News Article Analysis of the 4th Industrial Revolution and Advertising before and after COVID-19: Focusing on LDA and Word2vec (코로나 이전과 이후의 4차 산업혁명과 광고의 뉴스기사 분석 : LDA와 Word2vec을 중심으로)

  • Cha, Young-Ran
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.9
    • /
    • pp.149-163
    • /
    • 2021
  • The 4th industrial revolution refers to the next-generation industrial revolution led by information and communication technologies such as artificial intelligence (AI), Internet of Things (IoT), robot technology, drones, autonomous driving and virtual reality (VR) and it also has made a significant impact on the development of the advertising industry. However, the world is rapidly changing to a non-contact, non-face-to-face living environment to prevent the spread of COVID 19. Accordingly, the role of the 4th industrial revolution and advertising is changing. Therefore, in this study, text analysis was performed using Big Kinds to examine the 4th industrial revolution and changes in advertising before and after COVID 19. Comparisons were made between 2019 before COVID 19 and 2020 after COVID 19. Main topics and documents were classified through LDA topic model analysis and Word2vec, a deep learning technique. As the result of the study showed that before COVID 19, policies, contents, AI, etc. appeared, but after COVID 19, the field gradually expanded to finance, advertising, and delivery services utilizing data. Further, education appeared as an important issue. In addition, if the use of advertising related to the 4th industrial revolution technology was mainstream before COVID 19, keywords such as participation, cooperation, and daily necessities, were more actively used for education on advanced technology, while talent cultivation appeared prominently. Thus, these research results are meaningful in suggesting a multifaceted strategy that can be applied theoretically and practically, while suggesting the future direction of advertising in the 4th industrial revolution after COVID 19.

An exploratory study for the development of a education framework for supporting children's development in the convergence of "art activity" and "language activity": Focused on Text mining method ('미술'과 '언어' 활동 융합형의 아동 발달지원 교육 프레임워크 개발을 위한 탐색적 연구: 텍스트 마이닝을 중심으로)

  • Park, Yunmi;Kim, Sijeong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.297-304
    • /
    • 2021
  • This study aims not only to access the visual thought-oriented approach that has been implemented in established art therapy and education but also to integrate language education and therapeutic approach to support the development of school-age children. Thus, text mining technique was applied to search for areas where different areas of language and art can be integrated. This research was conducted in accordance with the procedure of basic research, preliminary DB construction, text screening, DB pre-processing and confirmation, stop-words removing, text mining analysis and the deduction about the convergent areas. These results demonstrated that this study draws convergence areas related to regional, communication, and learning functions, areas related to problem solving and sensory organs, areas related to art and intelligence, areas related to information and communication, areas related to home and disability, topics, conceptualization, peer-related areas, integration, reorganization, attitudes. In conclusion, this study is meaningful in that it established a framework for designing an activity-centered convergence program of art and language in the future and attempted a holistic approach to support child development.