• Title/Summary/Keyword: Bifidobacterium longum subsp. longum BBMN68

Search Result 2, Processing Time 0.018 seconds

Acid Response of Bifidobacterium longum subsp. longum BBMN68 Is Accompanied by Modification of the Cell Membrane Fatty Acid Composition

  • Liu, Songling;Ren, Fazheng;Jiang, Jingli;Zhao, Liang
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1190-1197
    • /
    • 2016
  • The acid response of Bifidobacterium longum subsp. longum BBMN68 has been studied in our previous study. The fab gene, which is supposed to be involved in membrane fatty acid biosynthesis, was demonstrated to be induced in acid response. In order to investigate the relationship between acid response and cell membrane fatty acid composition, the acid adaptation of BBMN68 was assessed and the membrane fatty acid composition at different adaptation conditions was identified. Indeed, the fatty acid composition was influenced by acid adaptation. Our results showed that the effective acid adaptations were accompanied with decrease in the unsaturated to saturated fatty acids ratio (UFA/SFA) and increase in cyclopropane fatty acid (CFA) content, which corresponded to previous studies. Moreover, both effective and non-effective acid adaptation conditions resulted in decrease in the C18:1 cis-9/C18:1 trans-9 ratio, indicating that the C18:1 cis-9/C18:1 trans-9 ratio is associated with acid tolerance response but not with acid adaptation response. Taken together, this study indicated that the UFA/SFA and CFA content of BBMN68 were involved in acid adaptation and the C18:1 cis-9/C18:1 trans-9 ratio was involved in acid tolerance response.

Biodistribution of a Promising Probiotic, Bifidobacterium longum subsp. longum Strain BBMN68, in the Rat Gut

  • Lv, Yang;Qiao, Xuewei;Zhao, Liang;Ren, Fazheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.863-871
    • /
    • 2015
  • Bifidobacterium longum subsp. longum BBMN68, isolated from centenarians in Guangxi, China, has been proved to be a promising probiotic strain for its health benefits. In this study, the biodistribution of this strain in the rat gut was first investigated using the quantitative realtime PCR assay and propidium monoazide. Strain-specific primers were originally designed based on the BBMN68 genome sequence. Healthy rats were orally inoculated with either a single dose of BBMN68 (1010 colony-forming units/kg), or with one dose per day for 7 days and bacterial concentrations were analyzed in detail from the intestinal contents and feces of four different gut locations, including stomach, small intestine, colon, and rectum. Results indicated that strain BBMN68 could overcome the rigors of passage through the upper gastrointestinal tract and transiently accumulate in the colon, even though survival in the stomach and small intestine was not high. A good level of BBMN8 could stay in vivo for 72 h following a 7-day oral administration, and a daily administration is suggested for a considerable and continuous population of BBMN68 to be maintained in the host intestine.