• 제목/요약/키워드: Bifidobacterium dentium

검색결과 5건 처리시간 0.02초

Genome sequence of Bifidobacterium dentium strain ATCC 15424 originally isolated from pleural fluid of an empyema patient (농흉 환자의 흉막액에서 분리된 Bifidobacterium dentium strain ATCC 15424의 유전체 염기서열 해독)

  • Moon, Ji-Hoi;Kim, Suegene;Yang, Seok Bin;Jang, Eun-Young;Shin, Seung-Yun;Lee, Jin-Yong;Lee, Jae-Hyung
    • Korean Journal of Microbiology
    • /
    • 제55권3호
    • /
    • pp.280-282
    • /
    • 2019
  • We present here a draft genome sequence of Bifidobacterium dentium strain ATCC 15424, originally isolated from pleural fluid of an empyema patient. The genome is 2,625,535 bp in length and has a GC content of 58.5%. The genome includes 2,154 protein-coding genes, 4 rRNAs, and 55 tRNAs. Unlike other B. dentium strains isolated from human dental caries, ATCC 15424 carries 247 strain-specific genes, including prophage remnants and type III/IV secretion system proteins, N-acetylmuramoyl-L-alanine amidase, and PRTRC system protein E. The sequence information will contribute to understanding of the natural variation of B. dentium as well as the genome diversity within the bacterial species.

Metabolism of Rutin and Poncirin by Human Intestinal Microbiota and Cloning of Their Metabolizing α-L-Rhamnosidase from Bifidobacterium dentium

  • Bang, Seo-Hyeon;Hyun, Yang-Jin;Shim, Juwon;Hong, Sung-Woon;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권1호
    • /
    • pp.18-25
    • /
    • 2015
  • To understand the metabolism of flavonoid rhamnoglycosides by human intestinal microbiota, we measured the metabolic activity of rutin and poncirin (distributed in many functional foods and herbal medicine) by 100 human stool specimens. The average α-L-rhamnosidase activities on the p-nitrophenyl-α-L-rhamnopyranoside, rutin, and poncirin subtrates were 0.10 ± 0.07, 0.25 ± 0.08, and 0.15 ± 0.09 pmol/min/mg, respectively. To investigate the enzymatic properties, α-L-rhamnosidase-producing bacteria were isolated from the specimens, and the α-L-rhamnosidase gene was cloned from a selected organism, Bifidobacterium dentium, and expressed in E. coli. The cloned α-L-rhamnosidase gene contained a 2,673 bp sequcence encoding 890 amino acid residues. The cloned gene was expressed using the pET 26b(+) vector in E. coli BL21, and the expressed enzyme was purified using Ni2+-NTA and Q-HP column chromatography. The specific activity of the purified α-L-rhamnosidase was 23.3 µmol/min/mg. Of the tested natural product constituents, the cloned α-L-rhamnosidase hydrolyzed rutin most potently, followed by poncirin, naringin, and ginsenoside Re. However, it was unable to hydrolyze quercitrin. This is the first report describing the cloning, expression, and characterization of α-L-rhamnosidase, a flavonoid rhamnoglycosidemetabolizing enzyme, from bifidobacteria. Based on these findings, the α-L-rhamnosidase of intestinal bacteria such as B. dentium seem to be more effective in hydrolyzing (1 →6) bonds than (1 →2) bonds of rhamnoglycosides, and may play an important role in the metabolism and pharmacological effect of rhamnoglycosides.

Hydrolysis of Arabinoxylo-oligosaccharides by α-ʟ-Arabinofuranosidases and β-ᴅ-Xylosidase from Bifidobacterium dentium

  • Lee, Min-Jae;Kang, Yewon;Son, Byung Sam;Kim, Min-Jeong;Park, Tae Hyeon;Park, Damee;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권2호
    • /
    • pp.187-194
    • /
    • 2022
  • Two α-ʟ-arabinofuranosidases (BfdABF1 and BfdABF3) and a β-ᴅ-xylosidase (BfdXYL2) genes were cloned from Bifidobacterium dentium ATCC 27679, and functionally expressed in E. coli BL21(DE3). BfdABF1 showed the highest activity in 50 mM sodium acetate buffer at pH 5.0 and 25℃. This exo-enzyme could hydrolyze p-nitrophenyl arabinofuranoside, arabino-oligosaccharides (AOS), arabinoxylo-oligosaccharides (AXOS) such as 32-α-ʟ-arabinofuranosyl-xylobiose (A3X), and 23-α-ʟ-arabinofuranosyl-xylotriose (A2XX), whereas hardly hydrolyzed polymeric substrates such as debranched arabinan and arabinoxylans. BfdABF1 is a typical exo-ABF with the higher specific activity on the oligomeric substrates than the polymers. It prefers to α-(1,2)-ʟ-arabinofuranosidic linkages compared to α-(1,3)-linkages. Especially, BfdABF1 could slowly hydrolyze 23,33-di-α-ʟ-arabinofuranosyl-xylotriose (A2+3XX). Meanwhile, BfdABF3 showed the highest activity in sodium acetate at pH 6.0 and 50℃, and it has the exclusively high activities on AXOS such as A3X and A2XX. BfdABF3 mainly catalyzes the removal of ʟ-arabinose side chains from various AXOS. BfdXYL2 exhibited the highest activity in sodium citrate at pH 5.0 and 55℃, and it specifically hydrolyzed p-nitrophenyl xylopyranoside and xylo-oligosaccharides (XOS). Also, BfdXYL2 could slowly hydrolyze AOS and AXOS such as A3X. Based on the detailed hydrolytic modes of action of three exo-hydrolases (BfdABF1, BfdABF3, and BfdXYL2) from Bf. dentium, their probable roles in the hemiceullose-utilization system of Bf. dentium are proposed in the present study. These intracellular exo-hydrolases can synergistically produce ʟ-arabinose and ᴅ-xylose from various AOS, XOS, and AXOS.

Distribution of Dominant Bifidobacteria in the Intestinal Microflora of Korean Adults and Seniors, Identified by SDS-PAGE of Whole Cell Proteins and 16S rDNA Sequence Analysis

  • KIM TAE WOON;SONG HEE SUNG;KIM HAE YEONG
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.388-394
    • /
    • 2005
  • In order to investigate the distribution of dominant Bifidobacterium species in intestinal microflora of Korean adults and seniors, SDS-PAGE profiles of whole cell proteins were used for the identification of bifidobacteria. To confirm the reliability of SDS-PAGE, the Bifidobacterium species identified by SDS-PAGE of whole cell proteins were validated by using 16S rDNA sequencing analysis. The results of SDS­PAGE corresponded well with those determined by the analysis of 16S rDNA sequencing. Based on the analysis of SDS-PAGE patterns on unidentified fecal strains which showed positive in fructose-6-phosphate phosphoketolase activity, B. adolescentis, B. longum, and B. bifidum were identified in the feces of adults, and B. adolescentis, B. longum, B. bifidum, B. breve, and B. dentium were identified in those of seniors. In most of the fecal samples tested, the predominant Bifidobacterium species consisted of only a few species, and differences in the distribution and numbers of Bifidobacterium species were observed between adults and seniors. B. adolescentis and B. longum were found to be the most common species in feces of adults, but not in seniors. Accordingly, the distribution and abundance of bifidobacteria in the human intestinal microflora varied depending on the age of hosts.

Carbohydrate Fermentation Character of Bifidobacteria and Lactobacilli isolated from Feces of the Adult Women supplied with Goat Milk (산양유를 섭취한 성인 여성의 분변에서 분리한 Bifidobacteria와 Lactobacilli의 탄수화물 발효특성)

  • Choi, Suk-Ho;Lim, Young-soon;Ham, Jun-Sang;Jeong, Seok-Geun;Lee, Seung-Bae
    • Journal of Dairy Science and Biotechnology
    • /
    • 제33권2호
    • /
    • pp.103-110
    • /
    • 2015
  • The objective of this study was to investigate the effects of consuming goat milk on the bacterial counts (colony forming units [CFU]) in adult women and to evaluate the carbohydrate fermentation capacity of bifidobacteria and lactobacilli isolated from their feces. Adult women who consumed goat milk (treatment group) had relatively higher CFU of bifidobacteria than did the control group, and the difference was significant (p<0.05) after 8 weeks. In total, 13 strains isolated from the feces of women in the treatment group were identified using 16S rRNA sequencing as Bifidobacterium adolescentis, B. longum, B. pseudocatenulatum, B. dentium, and Lactobacillus sakei. Similarly, 12 strains isolated from the feces of women in the control group included B. adolescentis, B. longum, L. ruminis, L. sakei, and B. pseudocatenulatum. All isolated bifidobacteria and lactobacilli fermented goat milk oligosaccharide and lactulose. All 7 strains of B. adolescentis fermented fructooligosaccharides, and 3 of the 4 B. pseudocatenulatum strains, 2 of the 3 L. sakei strains, and 1 of the 7 B. longum strains fermented fructooligosaccharides.

  • PDF