• Title/Summary/Keyword: Bifacial

Search Result 27, Processing Time 0.026 seconds

The Ecophysiological Changes of Capsicum annuum on Ozone-Sensitive and Resistant Varieties Exposed to Short-Term Ozone Stress (오존 감수성 및 저항성 고추 품종의 생리생태 변화)

  • Yun, Sung-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.3
    • /
    • pp.128-132
    • /
    • 2004
  • Ozone effects were studied by plant growth chamber to evaluate the impact of ozone ($O_3$) on the physiology of two hot pepper, Capsicum annuum L., cultivars, 'Dabotab' and 'Buchon'. Forty-day old plants with $5{\sim}7$ leaves were exposed to $O_3$ of <20 and 150 nL/L for 8h/d for 3 days. Net photosynthesis and stomatal conductance were measured and foliar injury was described. Foliar damage due to the treated $O_3$ was different from the varieties. 'Dabotab' was most sensitive to $O_3$ and 'Buchon' was resistant. Symptom of ozone damage on the leaves was bifacial necrosis. Decreases of net photosynthesis by $O_3$ were 56% and 40% on 'Dabotab' and 'Buchon', respectively. Decreases of stomatal conductance by $O_3$ were 66% and 63% on each variety. $O_3$ damage on net photosynthesis was started at the low levels of light on the two hot peppers. In addition, assimilation-internal $CO_2$ concentration curves were not different from the two varieties. In conclusion, $O_3$ closed the stomata and decrease net photosynthesis on hot peppers regardless of the ozone sensitivity on leaf injury, but the difference of ecophysiological responses between the two varieties was not found clearly.

A Study on the Relationship between Factors Affecting Soldering Characteristics and Efficiency of Half-cell Soldering Process with Multi-wires (Half-cell 기반 multi-wires 접합 공정에서 접합 특성에 영향을 주는 요인과 효율의 상관관계 연구)

  • Kim, Jae Hun;Son, Hyoung Jin;Kim, Sung Hyun
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.65-70
    • /
    • 2019
  • As a demand of higher power photovoltaic modules, shingled, multi-busbar, half-cell, and bifacial techniques are developed. Multi-busbar module has advantage for large amount of light havesting. And, half-cell is high power module for reducing resistive losses and higher shade tolerance. Recently, researches on multi-busbar is focused on reliability according to adhesion and intermetallic compound between Sn-Pb solder and Ag electrode. And half-cell module is researched to comparing with full-sized cell module for structure difference. In this study, we investigated the factors affecting to efficiency and adhesion of multi-wires half-cell module according to wire thickness, solder thickness, and flux. The results of solar simulator and peel test was that peel strength and efficiency of soldered cell is not related. But samples with flux including high solid material showed high efficiency. The results of FE-SEM and EDX line scan on cross-section between wire and Ag electrode for different flux showed thickness of solder joint between wire and Ag electrode is increasing through solid material increasing. Flux including high solid material would affect to solder behavior on Ag electrode. Higher solid material occurred lower growth of IMC layer because solder permeate to sider of wire ribbon than Ag electrode. And it increased fill factor for high efficiency. In soldering process, amount of solid material in flux and solder thickness are the factor related with characteristic of soldered photovoltaic cell.

Structural Analysis Model to Evaluate the Mechanical Reliability of Large-area Photovoltaic Modules (대면적 태양광 모듈의 기계적 신뢰성 평가를 위한 모델)

  • Noh, Yo Han;Jeong, Jeong Ho;Lee, Jaehyeong
    • Current Photovoltaic Research
    • /
    • v.10 no.2
    • /
    • pp.56-61
    • /
    • 2022
  • Recently, the expansion of the domestic solar market due to the promotion of eco-friendly and alternative energy-related policies is promising, and it is expected to lead the high-efficiency/high-power module market based on M10 or larger cells to reduce LCOE, 540-560W, M12 based on M10 cells Compared to the existing technology with an output of 650-700W based on cells, it is necessary to secure competitiveness through the development of modules with 600W based on M10 cells and 750W based on M12 cells. For the development of high efficiency/high-power n-type bifacial, it is necessary to secure a lightweight technology and structure due to the increase in weight of the glass to glass module according to the large area of the module. Since the mechanical strength characteristics according to the large area and high weight of the module are very important, design values such as a frame of a new structure that can withstand the mechanical load of the Mechanical Load Test and the location of the mounting hole are required. In this study, a structural analysis design model was introduced to secure mechanical reliability according to the enlargement of the module area, and the design model was verified through the mechanical load test of the actual product. It can be used as a design model to secure the mechanical reliability required for PV modules by variables such as module area, frame shape, and the location and quantity of mounting holes of the structural analysis model verified. A relationship of output drop can be obtained.

Anatomy and Artificial Seed Propagation in Anti -cancer Plant Orostachys japonicus A. Berger (항암식물 와송의 해부 형태적 관찰과 대량 증식에 의한 인공재배연구)

  • 신동영;이영만;김학진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.2
    • /
    • pp.146-157
    • /
    • 1994
  • Wasong(Orostachys japonicus A. Berger) has been used as anti-cancer medicinal plants from ancient time. This experiment was conducted to obtain some fundamental informations concerning anatomical study, germination test, soil analysis of indigenious districks, adaptaion of soil for wasong. The leaf of wasong was xerotype with spine, mesophyl chloroplast is dense surrounded vascular bundle, with a many large water storage tissue without chloroplast, and was bifacial stomata leaf type. The stem of wasong was amphicribral vascular bundle, central cylinder was cylinder type and protostele. Root was polarch type, potoxylem of it's was arranged in ring shape of annulation and metaxylem. The structure of flower was cymose, was caylyx of 5 sepals, corolla of 5 petals, roecium of 10 stames, ovules of five, placentation parietal, ovary superior, axile placenta. The optimum temperature for seed germination was $25^{\circ}C$ under light and germination percentage was 22.5%. Dormancy breaking was effective for 6-8 days at 5$^{\circ}C$ and at 100 ppm level of $GA_3$ The soil analysis of wasong local districks, content of available $P_2O_5$, Ca were higer than optimal level of upland and C.E.C., exchangeable k was not significantly different of that, but exchangeable magnesium was very low. The growth of wasong was affected draining regardless soil combination treatment.

  • PDF

Eco-physiological Responses of Two Populus deltoides Clones to Ozone

  • Yun, Sung-Chul;Kim, Pan-Ki;Hur, Jae-Seoun;Lee, Jae-Cheon;Park, Eun-Woo
    • The Korean Journal of Ecology
    • /
    • v.24 no.2
    • /
    • pp.93-100
    • /
    • 2001
  • One-year-old cottonwood (Populus deltoides Bartr.) clones, which were classified as sensitive or tolerant, were exposed to 150 n1/1 ozone (O$_3$) over 8 days for 8 hours each day under glass chamber conditions with natural sunlight. The leaves of the sensitive clone had black stipple and bifacial necrosis after $O_3$ treatment. Photosynthesis and stomatal conductance were measured before, during, and after the $O_3$ treatment. The photosynthetic rates due to $O_3$ treatment were decreased 51 percent and 34 percent on the sensitive and tolerant clone, respectively. The stomatal conductance of the sensitive clone was more than 40 percent higher than that of the tolerant clone regardless of the $O_3$ treatment. As light intensity increased, the $O_3$ effect on photosynthesis was clear. Compared to the previous growth chamber studies, our natural light exposure system was able to maintain a stable photosynthetic responses of the control treatment throughout the fumigation period. In addition, changes in assimilation versus intercellular $CO_2$ concentration (A/C curves) showed that $O_3$ decreased the slope and asymptote of the curves for the sensitive clone. This indicates that $O_3$ decreases the biochemical capacity of photosynthesis on the sensitive clone. Chlorophyll contents and fluorescence of the two clones were analyzed to examine the $O_3$ effects on photosystem 11, but $O_3$ did not impact these variables on either clone. Although the tolerant clone did not show any foliar injury, we could not find any ecophysiological defensive responses to $O_3$ treated. Stomatal conductance of the tolerant clone was originally much lower than that of the sensitive one. Thus, the mechanisms of the tolerant clone in this system are to narrowly open stomata and efficiently maintain photosynthesis with a more durable biochemical apparatus of photosynthesis under $O_3$ stress. The sensitive clone has higher photosynthetic capacity and more efficient light reaction activity than the tolerant one under charcoal filtered condition, but is not as resilient under stress.

  • PDF

Anatomy of the Korean mistletoe and their haustorial features in host plants (한국산 겨우살이과 식물의 형태와 기주별 흡기 특징)

  • Choi, Kyung;Park, Kwang-Woo;Kim, Hyuk-Jin;Lee, Jae-Dong;Koo, Jachoon;Whang, Sung-Soo
    • Korean Journal of Plant Taxonomy
    • /
    • v.39 no.1
    • /
    • pp.4-11
    • /
    • 2009
  • Anatomical features of both leaves and stems of the four mistletoes in Korea (Viscum album var. coloratum, Korthalsella japonica, Loranthus yadoriki, L. tanaka) and of their secondary haustorial structure within several host plants were investigated. Among the four mistletoes, there were diagnostic characters of the anatomy of leaves and stems which enabled us to distinguish the four taxa. Leaves were observed to have three distinct characters including unifacial or bifacial leaves, the number of vascular bundles in the midveins, and the level of development of sclerenchyma cells. There were four diagnostic characters of stems: overall morphology of stems in transverse view, degree of cuticle development, arrangement of vascular bundles, and features of the sclerenchyma and pith. In order to determine secondary haustorial traits, the research focused on the seven host plants of L. yadoriki and on the five host plants of K. japonica. The following features were found to be important: presence or absence of an aerial runner root, the shape of the haustorial strand and flange, the degree of penetration into host tissues, and their development of shaft in transverse view, the development both of secondary haustorial cells and short tracheid in hyphae. Korthalsella japonica and L. yadorki were clearly distinguished by these characters. The secondary haustorial forms in each host were somewhat different, due to varying degrees of development in the strength of the host plants' wood. However, qualitative characters like the final position of the secondary haustorial penetration into host tissues and the development of short tracheid cells were not only affected by the degree of development of the host plants, but also useful for the systematic study.

Scanning Electron Microscopic Studies on the Features of Compression Wood, Opposite Wood, and Side Wood in Branch of Pitch Pine(Pinus rigida Miller) (리기다소나무 (Pinus rigida Miller) 지재(枝材)의 압축이상재(壓縮異常材), 대응재(對應材) 및 측면재(側面材) 특성(特性)에 관한 주사전자현미경적(走査電子顯微鏡的)인 연구(硏究))

  • Eom, Young-Geun;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.3-18
    • /
    • 1985
  • In Korea, a study on the anatomical features of pitch pine (pinus rigida Miller) branch wood through photo-microscopical method was reported in 1972 by Lee. Therefore, as a further study of Lee's on the anatomical features in branch wood of pinus rigida miller that grows in Korea, compression wood, opposite wood, and side wood were selected and treated for the purpose of comparing their structures revealed on cross and radial surface through scanning electron microscope in this study. The obtained results in this study were summarized as follows; 1. The trachied transition from earlywood to late wood is very gradual and the tracheids are nearly regular in both arrangement and size in compression wood but this transition in opposite wood and side wood is abrupt and the tracheids in opposite wood and side wood are less regular than those in compression wood. Also, the annual ring width of opposite wood is narrower than that of compression wood or side wood and the rays revealed on cross surface of side wood are more distinct than compression wood and opposite wood rays. 2. The tracheids of compression wood show roundish trends especially in earlywood but those of opposite wood and side wood show some angular trends. And intercellular space, helical cavity, and spiral check are present in both earlywood and latewood of compression wood but not present in opposite wood and side wood irrespective of earlywood and latewood. 3. The wall thickness of latewood tracheid is similar to that of earlywood tracheid in compression wood whereas the wall thickness of latewood tracheid is by far thicker than that of earlywood tracheid in opposite wood and side wood and the S3 layer of secondary wall is lack in compression wood tracheid unlike opposite wood and side wood tracheid. 4. The tracheids in compression wood are often distorted at their tips unlike those in opposite wood and side wood and the bordered pit in compression wood tracheid is located at the bottom of helical groove unlike that in opposite wood and side wood tracheid. 5. The bordered pits in radial wall of opposite wood and side wood tracheids are oval in shape but those of compression wood tracheids show some modified oval shape. 6. In earlywood of side wood, the small apertures of cross-field pits are roundish triangle to rectangle and the large one are fenestriform through the coalition of two small ones. However, the small apertures of cross-field pits are upright oval and the large ones are procumbent oval shape in earlywood of opposite wood and the apertures of cross-field pits in compression wood are tilted bifacial convex lens shape in earlywood and slit in late wood because of the border on tracheid side.

  • PDF