• Title/Summary/Keyword: Bidirectional reflectance-distribution function

Search Result 30, Processing Time 0.036 seconds

Radiometric Cross Calibration of KOMPSAT-3 and Lnadsat-8 for Time-Series Harmonization (KOMPSAT-3와 Landsat-8의 시계열 융합활용을 위한 교차검보정)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1523-1535
    • /
    • 2020
  • In order to produce crop information using remote sensing, we use classification and growth monitoring based on crop phenology. Therefore, time-series satellite images with a short period are required. However, there are limitations to acquiring time-series satellite data, so it is necessary to use fusion with other earth observation satellites. Before fusion of various satellite image data, it is necessary to overcome the inherent difference in radiometric characteristics of satellites. This study performed Korea Multi-Purpose Satellite-3 (KOMPSAT-3) cross calibration with Landsat-8 as the first step for fusion. Top of Atmosphere (TOA) Reflectance was compared by applying Spectral Band Adjustment Factor (SBAF) to each satellite using hyperspectral sensor band aggregation. As a result of cross calibration, KOMPSAT-3 and Landsat-8 satellites showed a difference in reflectance of less than 4% in Blue, Green, and Red bands, and 6% in NIR bands. KOMPSAT-3, without on-board calibrator, idicate lower radiometric stability compared to ladnsat-8. In the future, efforts are needed to produce normalized reflectance data through BRDF (Bidirectional reflectance distribution function) correction and SBAF application for spectral characteristics of agricultural land.

The Influence of the Reflected Arc Light on Vision Sensors for Welding Process Autimation (물체의 반사성질이 용접자동화용 시각센서의 아크노이즈에 미치는 영향에 관한 연구)

  • 이철원;나석주
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.115-126
    • /
    • 1995
  • Vision sensors using the optical triangulation have been widely used for automatic welding systems in various ways, but their reliability is seriously affected by presence of the arc noise. The reliability of vision sensors was analyzed with variation of the arc noise by considering the reflectance of the base metal. first, the properties of the base metal's reflection were modelled by using the Bidirectional Reflectance-Distribution Function(BRDF), and then the variation of the reflected arc intensity was formulated for various configurations of the torch, base metal, and sensor. The experimental data of the gray level of the reflected arc light were obtained for two materials, mild steel and stainless steel. It was found that the results calculated from the proposed model were in good agreement with the experimental data.

  • PDF

B-spline Volume BRDF Representation and Application in Physically-based Rendering (물리기반 렌더링에서의 비스플라인 볼륨 BRDF 표현과 응용)

  • Lee, Joo-Haeng;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.6
    • /
    • pp.469-477
    • /
    • 2008
  • Physically-based rendering is an image synthesis technique based on simulation of physical interactions between light and surface materials. Since generated images are highly photorealistic, physically-based rendering has become an indispensable tool in advanced design visualization for manufacturing and architecture as well as in film VFX and animations. Especially, BRDF (bidirectional reflectance distribution function) is critical in realistic visualization of materials since it models how an incoming light is reflected on the surface in terms of intensity and outgoing angles. In this paper, we introduce techniques to represent BRDF as B-spline volumes and to utilize them in physically-based rendering. We show that B-spline volume BRDF (BVB) representation is suitable for measured BRDFs due to its compact size without quality loss in rendering. Moreover, various CAGD techniques can be applied to B-spline volume BRDFs for further controls such as refinement and blending.

An Effective Cloth Rendering using Internal Scatter Function (내부 산란함수를 이용한 효과적인 옷감 렌더링)

  • Park, Sun-Yong;Chun, Young-Jae;Oh, Kyoung-Su
    • Journal of Korea Game Society
    • /
    • v.9 no.3
    • /
    • pp.97-105
    • /
    • 2009
  • In this paper, we propose a new rendering scheme of cloth by measuring light-scattering pattern inside the cloth and reproducing using the pattern. To date, the BTF(Bidirectional Texture Function) has been one of the most appropriate method to realistically reconstruct cloth surface. However, the BTF has a couple of defects that it ultimately requires an infinite amount of data and all light effects should be used all together. We noted that internal scattering has a decisive contribution to the reality of cloth. Following this observation, we take an image of a ray of light scattering inside cloth for every position of the cloth sample and determine each pixel value by adding up all light influences arriving from its vicinity. Our method we propose in this paper provides a clue to more realistically represent cloth-like materials, which is one of the most challenging materials to express, by enabling each ray to be controlled individually.

  • PDF

Analysis of BRD Components Over Major Land Types of Korea

  • Kim, Sang-Il;Han, Kyung-Soo;Park, Soo-Jea;Pi, Kyoung-Jin;Kim, In-Hwan;Lee, Min-Ji;Lee, Sun-Gu;Chun, Young-Sik
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.653-664
    • /
    • 2010
  • The land surface reflectance is a key parameter influencing the climate near the surface. Therefore, it must be determined with sufficient accuracy for climate change research. In particular, the characteristics of the bidirectional reflectance distribution function (BRDF) when using earth observation system (EOS) are important for normalizing the reflected solar radiation from the earth's surface. Also, wide swath satellites like SPOT/VGT (VEGETATION) permit sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning. This gives a difficulty to BRDF model based reflectance normalization of high resolution satellites. The principal objective of the study is to add BRDF modeling of high resolution satellites and to supply insufficient angular sampling through identifying BRDF components from SPOT/VGT. This study is performed as the preliminary data for apply to high-resolution satellite. The study provides surface parameters by eliminating BRD effect when calculated biophysical index of plant by BRDF model. We use semi-empirical BRDF model to identify the BRD components. This study uses SPOT/VGT satellite data acquired in the S1 (daily) data. Modeled reflectance values show a good agreement with measured reflectance values from SPOT satellite. This study analyzes BRD effect components by using the NDVI(Normalized Difference Vegetation Index) and the angle components such as solar zenith angle, satellite zenith angle and relative azimuth angle. Geometric scattering kernel mainly depends on the azimuth angle variation and volumetric scattering kernel is less dependent on the azimuth angle variation. Also, forest from land cover shows the wider distribution of value than cropland, overall tendency is similar. Forest shows relatively larger value of geometric term ($K_1{\cdot}f_1$) than cropland, When performed comparison between cropland and forest. Angle and NDVI value are closely related.

An Efficiency Assessment for Reflectance Normalization of RapidEye Employing BRD Components of Wide-Swath satellite

  • Kim, Sang-Il;Han, Kyung-Soo;Yeom, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.303-314
    • /
    • 2011
  • Surface albedo is an important parameter of the surface energy budget, and its accurate quantification is of major interest to the global climate modeling community. Therefore, in this paper, we consider the direct solution of kernel based bidirectional reflectance distribution function (BRDF) models for retrieval of normalized reflectance of high resolution satellite. The BRD effects can be seen in satellite data having a wide swath such as SPOT/VGT (VEGETATION) have sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning when applying semi-empirical model. This gives a difficulty to run BRDF model inferring the reflectance normalization of high resolution satellites. The principal purpose of the study is to estimate normalized reflectance of high resolution satellite (RapidEye) through BRDF components from SPOT/VGT. We use semi-empirical BRDF model to estimated BRDF components from SPOT/VGT and reflectance normalization of RapidEye. This study used SPOT/VGT satellite data acquired in the S1 (daily) data, and within this study is the multispectral sensor RapidEye. Isotropic value such as the normalized reflectance was closely related to the BRDF parameters and the kernels. Also, we show scatter plot of the SPOT/VGT and RapidEye isotropic value relationship. The linear relationship between the two linear regression analysis is performed by using the parameters of SPOTNGT like as isotropic value, geometric value and volumetric scattering value, and the kernel values of RapidEye like as geometric and volumetric scattering kernel Because BRDF parameters are difficult to directly calculate from high resolution satellites, we use to BRDF parameter of SPOT/VGT. Also, we make a decision of weighting for geometric value, volumetric scattering value and error through regression models. As a result, the weighting through linear regression analysis produced good agreement. For all sites, the SPOT/VGT isotropic and RapidEye isotropic values had the high correlation (RMSE, bias), and generally are very consistent.

Measurement-based Face Rendering reflecting Positional Scattering Properties (위치별 산란특성을 반영한 측정기반 얼굴 렌더링)

  • Park, Sun-Yong;Oh, Kyoung-Su
    • Journal of Korea Game Society
    • /
    • v.9 no.5
    • /
    • pp.137-144
    • /
    • 2009
  • This paper predicts 6 facial regions that may have sharply different scattering properties, rendering the face more realistically based on their diffusion profiles. The scattering properties are acquired in the form of high dynamic range by photographing the pattern formed around an unit ray incident on facial skin. The acquired data are fitted to a 'linear combination of Gaussian functions', which well approximates the original diffusion profile of skin and has good characteristics as the filter. During the process, to prevent its solutions from converging into local minima, we take advantage of the genetic algorithm to set up the initial value. Each Gaussian term is applied to the irradiance map as a filter, expressing subsurface scattering effect. In this paper, to efficiently handle the maximum 12 Gaussian filterings, we make use of the parallel capacity of CUDA.

  • PDF

Adaptive B-spline volume representation of measured BRDF data for photorealistic rendering

  • Park, Hyungjun;Lee, Joo-Haeng
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • Measured bidirectional reflectance distribution function (BRDF) data have been used to represent complex interaction between lights and surface materials for photorealistic rendering. However, their massive size makes it hard to adopt them in practical rendering applications. In this paper, we propose an adaptive method for B-spline volume representation of measured BRDF data. It basically performs approximate B-spline volume lofting, which decomposes the problem into three sub-problems of multiple B-spline curve fitting along u-, v-, and w-parametric directions. Especially, it makes the efficient use of knots in the multiple B-spline curve fitting and thereby accomplishes adaptive knot placement along each parametric direction of a resulting B-spline volume. The proposed method is quite useful to realize efficient data reduction while smoothing out the noises and keeping the overall features of BRDF data well. By applying the B-spline volume models of real materials for rendering, we show that the B-spline volume models are effective in preserving the features of material appearance and are suitable for representing BRDF data.

Realistic representation based on measured BRDF data (측정 기반 BRDF 데이터를 이용한 실감재질표현 연구)

  • Yoo, Hyun-Jin;Kim, Kang-Yeon;Kim, Hoe-Min;Seo, Myoung-Kook;Ko, Kwang-Hee;Lee, Kwan-H.
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.1019-1024
    • /
    • 2007
  • 그래픽스 분야에서 다양한 재질을 사실감 있게 표현하려는 연구가 활발히 진행되고 있는 가운데, 다양한 재질의 반사특성을 측정하는 방법들이 시도되고 있다. 본 연구에서는 디지털 카메라를 이용하여 영상 기반 양방향 반사 분포함수(BRDF: Bidirectional Reflectance Distribution Function)를 획득할 수 있는 측정 시스템을 구축하였다, 이를 통한 BRDF 모델은 경험적(empirical)혹은 물리(physical)기반의 모델에 비해 보다 사실성 높은 표현이 가능하다. 영상 기반으로 양방향 반사 분포함수를 생성하는 과정에서 노출시간을 달리한 여러 장의 영상을 가지고 HDR(High Dynamic Range) 영상을 생성하였다. 또한 원색재현을 위해 표준광원을 사용하고 컬러차트와 회귀분석을 통해 컬러 보정을 수행하였다. 본 연구에서는 플라스틱이나 금속재질같이 불투명한 등방성(isotropic) 재질을 사용하였고, 이러한 재질의 BRDF데이터를 통해 산업제품에서 많이 사용되는 재질의 모델을 보다 실감나게 렌더링(rendering)할 수 있다.

  • PDF

RADIOMETRIC CALIBRATION OF OSMI IMAGERY USING SOLAR CALIBRATION (SOLAR CALIBRAION을 이용한 OSMI 영상자료의 복사 보정)

  • 이동한;김용승
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.295-308
    • /
    • 2000
  • OSMI(Ocean Scanning Multi-Spectral Imager) raw image data(Level 0) were acquired and radiometrically corrected. We have applied two methods, using solar & dark calibration data from OSMI sensor and comparing with the SeaWiFS data, to the radiometric correction of OSMI raw image data. First, we could get the values of the gain and the offset for each pixel and each band from comparing the solar & dark calibration data with the solar input radiance values, calculated from the transmittance, BRDF (Bidirectional Reflectance Distribution Function) and the solar incidence angle($\beta$, $\theta$) of OSMI sensor. Applying this calibration data to OSMI raw image data, we got the two odd results, the lower value of the radiometric corrected image data than the expected value, and the Venetian Blind Effect in the radiometric corrected image data. Second, we could get the reasonable results from comparing OSMI raw image data with the SeaWiFS data, and get a new problem of OSMI sensor.

  • PDF