• 제목/요약/키워드: Bidirectional Long Short-Term Memory

검색결과 65건 처리시간 0.025초

양방향 장단기 메모리 신경망을 이용한 욕설 검출 (Abusive Detection Using Bidirectional Long Short-Term Memory Networks)

  • 나인섭;이신우;이재학;고진광
    • 한국빅데이터학회지
    • /
    • 제4권2호
    • /
    • pp.35-45
    • /
    • 2019
  • 욕설과 비속어를 포함한 악성 댓글에 대한 피해는 최근 언론에 나오는 연애인의 자살뿐만 아니라 사회 전반에서 다양한 형태로 증가하고 있다. 이 논문에서는 양방향 장단기 메모리 신경망 모델을 이용하여 욕설을 검출하는 기법을 제시하였다. 웹 크룰러를 통해 웹상의 댓글을 수집하고, 영어나 특수문자 등의 사용하지 않은 글에 대해 불용어 처리를 하였다. 불용어 처리된 댓글에 대해 문장의 전·후 관계를 고려한 양방향 장단기 메모리 신경망 모델을 적용하여 욕설 여부를 판단하고 검출하였다. 양방향 장단기 메모리 신경망을 사용하기 위해 검출된 댓글에 대해 형태소 분석과 벡터화 과정을 거쳤으며 각 단어들에 욕설 해당 여부를 라벨링하여 진행하였다. 실험 결과 정제하고 수집된 총 9,288개의 댓글에 대해 88.79%의 성능을 나타내었다.

  • PDF

Long-term prediction of safety parameters with uncertainty estimation in emergency situations at nuclear power plants

  • Hyojin Kim;Jonghyun Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1630-1643
    • /
    • 2023
  • The correct situation awareness (SA) of operators is important for managing nuclear power plants (NPPs), particularly in accident-related situations. Among the three levels of SA suggested by Ensley, Level 3 SA (i.e., projection of the future status of the situation) is challenging because of the complexity of NPPs as well as the uncertainty of accidents. Hence, several prediction methods using artificial intelligence techniques have been proposed to assist operators in accident prediction. However, these methods only predict short-term plant status (e.g., the status after a few minutes) and do not provide information regarding the uncertainty associated with the prediction. This paper proposes an algorithm that can predict the multivariate and long-term behavior of plant parameters for 2 h with 120 steps and provide the uncertainty of the prediction. The algorithm applies bidirectional long short-term memory and an attention mechanism, which enable the algorithm to predict the precise long-term trends of the parameters with high prediction accuracy. A conditional variational autoencoder was used to provide uncertainty information about the network prediction. The algorithm was trained, optimized, and validated using a compact nuclear simulator for a Westinghouse 900 MWe NPP.

DG-based SPO tuple recognition using self-attention M-Bi-LSTM

  • Jung, Joon-young
    • ETRI Journal
    • /
    • 제44권3호
    • /
    • pp.438-449
    • /
    • 2022
  • This study proposes a dependency grammar-based self-attention multilayered bidirectional long short-term memory (DG-M-Bi-LSTM) model for subject-predicate-object (SPO) tuple recognition from natural language (NL) sentences. To add recent knowledge to the knowledge base autonomously, it is essential to extract knowledge from numerous NL data. Therefore, this study proposes a high-accuracy SPO tuple recognition model that requires a small amount of learning data to extract knowledge from NL sentences. The accuracy of SPO tuple recognition using DG-M-Bi-LSTM is compared with that using NL-based self-attention multilayered bidirectional LSTM, DG-based bidirectional encoder representations from transformers (BERT), and NL-based BERT to evaluate its effectiveness. The DG-M-Bi-LSTM model achieves the best results in terms of recognition accuracy for extracting SPO tuples from NL sentences even if it has fewer deep neural network (DNN) parameters than BERT. In particular, its accuracy is better than that of BERT when the learning data are limited. Additionally, its pretrained DNN parameters can be applied to other domains because it learns the structural relations in NL sentences.

에너지인터넷에서 1D-CNN과 양방향 LSTM을 이용한 에너지 수요예측 (Prediction for Energy Demand Using 1D-CNN and Bidirectional LSTM in Internet of Energy)

  • 정호철;선영규;이동구;김수현;황유민;심이삭;오상근;송승호;김진영
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.134-142
    • /
    • 2019
  • 에너지인터넷 기술의 발전과 다양한 전자기기의 보급으로 에너지소비량이 패턴이 다양해짐에 따라 수요예측에 대한 신뢰도가 감소하고 있어 발전량 최적화 및 전력공급 안정화에 문제를 야기하고 있다. 본 연구에서는 고신뢰성을 갖는 수요예측을 위해 딥러닝 기법인 Convolution neural network(CNN)과 Bidirectional Long Short-Term Memory(BLSTM)을 융합한 1Dimention-Convolution and Bidirectional LSTM(1D-ConvBLSTM)을 제안하고, 제안한 기법을 활용하여 시계열 에너지소비량대한 소비패턴을 효과적으로 추출한다. 실험 결과에서는 다양한 반복학습 횟수와 feature map에 대해서 수요를 예측하고 적은 반복학습 횟수로도 테스트 데이터의 그래프 개형을 예측하는 것을 검증한다.

딥러닝을 이용한 풍력 발전량 예측 (Prediction of Wind Power Generation using Deep Learnning)

  • 최정곤;최효상
    • 한국전자통신학회논문지
    • /
    • 제16권2호
    • /
    • pp.329-338
    • /
    • 2021
  • 본 연구는 풍력발전의 합리적인 운영 계획과 에너지 저장창치의 용량산정을 위한 풍력 발전량을 예측한다. 예측을 위해 물리적 접근법과 통계적 접근법을 결합하여 풍력 발전량의 예측 방법을 제시하고 풍력 발전의 요인을 분석하여 변수를 선정한다. 선정된 변수들의 과거 데이터를 수집하여 딥러닝을 이용해 풍력 발전량을 예측한다. 사용된 모델은 Bidirectional LSTM(:Long short term memory)과 CNN(:Convolution neural network) 알고리즘을 결합한 하이브리드 모델을 구성하였으며, 예측 성능 비교를 위해 MLP 알고리즘으로 이루어진 모델과 오차를 비교하여, 예측 성능을 평가하고 그 결과를 제시한다.

BLSTM 구조의 계층적 순환 신경망을 이용한 모바일 제스처인식 (Mobile Gesture Recognition using Hierarchical Recurrent Neural Network with Bidirectional Long Short-Term Memory)

  • 이명춘;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.321-323
    • /
    • 2012
  • 스마트폰 사용의 보편화와 센서기술의 발달로 이를 응용하는 다양한 연구가 진행되고 있다. 특히 가속도, GPS, 조도, 방향센서 등의 센서들이 스마트폰에 부착되어 출시되고 있어서, 이를 이용한 상황인지, 행동인식 등의 관련 연구들이 활발하다. 하지만 다양한 클래스를 분류하면서 높은 인식률을 유지하는 것은 어려운 문제이다. 본 논문에서는 인식률 향상을 위해 계층적 구조의 순환 신경망을 이용하여 제스처를 인식한다. 스마트폰의 가속도 센서를 이용하여 사용자의 제스처 데이터를 수집하고 BLSTM(Bidirectional Long Short-Term Memory) 구조의 순환신경망을 계층적으로 사용하여, 20가지 사용자의 제스처와 비제스처를 분류한다. 약 24,850개의 시퀀스 데이터를 사용하여 실험한 결과, 기존 BLSTM은 평균 89.17%의 인식률을 기록한 반면 계층적 BLSTM은 평균 91.11%의 인식률을 나타내었다.

Multivariate Congestion Prediction using Stacked LSTM Autoencoder based Bidirectional LSTM Model

  • Vijayalakshmi, B;Thanga, Ramya S;Ramar, K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권1호
    • /
    • pp.216-238
    • /
    • 2023
  • In intelligent transportation systems, traffic management is an important task. The accurate forecasting of traffic characteristics like flow, congestion, and density is still active research because of the non-linear nature and uncertainty of the spatiotemporal data. Inclement weather, such as rain and snow, and other special events such as holidays, accidents, and road closures have a significant impact on driving and the average speed of vehicles on the road, which lowers traffic capacity and causes congestion in a widespread manner. This work designs a model for multivariate short-term traffic congestion prediction using SLSTM_AE-BiLSTM. The proposed design consists of a Bidirectional Long Short Term Memory(BiLSTM) network to predict traffic flow value and a Convolutional Neural network (CNN) model for detecting the congestion status. This model uses spatial static temporal dynamic data. The stacked Long Short Term Memory Autoencoder (SLSTM AE) is used to encode the weather features into a reduced and more informative feature space. BiLSTM model is used to capture the features from the past and present traffic data simultaneously and also to identify the long-term dependencies. It uses the traffic data and encoded weather data to perform the traffic flow prediction. The CNN model is used to predict the recurring congestion status based on the predicted traffic flow value at a particular urban traffic network. In this work, a publicly available Caltrans PEMS dataset with traffic parameters is used. The proposed model generates the congestion prediction with an accuracy rate of 92.74% which is slightly better when compared with other deep learning models for congestion prediction.

Automatic proficiency assessment of Korean speech read aloud by non-natives using bidirectional LSTM-based speech recognition

  • Oh, Yoo Rhee;Park, Kiyoung;Jeon, Hyung-Bae;Park, Jeon Gue
    • ETRI Journal
    • /
    • 제42권5호
    • /
    • pp.761-772
    • /
    • 2020
  • This paper presents an automatic proficiency assessment method for a non-native Korean read utterance using bidirectional long short-term memory (BLSTM)-based acoustic models (AMs) and speech data augmentation techniques. Specifically, the proposed method considers two scenarios, with and without prompted text. The proposed method with the prompted text performs (a) a speech feature extraction step, (b) a forced-alignment step using a native AM and non-native AM, and (c) a linear regression-based proficiency scoring step for the five proficiency scores. Meanwhile, the proposed method without the prompted text additionally performs Korean speech recognition and a subword un-segmentation for the missing text. The experimental results indicate that the proposed method with prompted text improves the performance for all scores when compared to a method employing conventional AMs. In addition, the proposed method without the prompted text has a fluency score performance comparable to that of the method with prompted text.

LSTM과 Bi-LSTM을 사용한 비주기성 시계열 데이터 예측 성능 비교 분석 (Comparative Analysis of Prediction Performance of Aperiodic Time Series Data using LSTM and Bi-LSTM)

  • 이주형;홍준기
    • 한국빅데이터학회지
    • /
    • 제7권2호
    • /
    • pp.217-224
    • /
    • 2022
  • 온라인 쇼핑의 대중화로 인해 많은 의류 상품이 온라인 쇼핑을 통해 소비된다. 의류 상품은 다른 상품과 달리 판매량이 일정하지 않고 날씨의 변화에 따라 판매량이 변화하는 특징이 있다. 따라서 의류 상품의 머신 러닝을 적용한 효율적인 재고 관리 시스템에 대한 연구는 매우 중요하다. 본 논문에서는 의류 업체 'A'로부터 실제 의류 상품 판매량 데이터를 수집하고 판매량 데이터와 같은 시계열 데이터의 예측에 많이 활용되는 LSTM(Long Short-Term Memory)과 Bidirectional-LSTM(Bi-LSTM)의 학습에 사용하여 LSTM과 Bi-LSTM의 판매량 예측 효율을 비교 분석하였다. 시뮬레이션 결과를 통해 LSTM 기술 대비 Bi-LSTM은 시뮬레이션 시간은 더 많이 소요되지만 의류 상품 판매량 데이터와 같은 비주기성 시계열 데이터의 예측 정확도가 동일하다는 것을 확인하였다.

Cross-Domain Text Sentiment Classification Method Based on the CNN-BiLSTM-TE Model

  • Zeng, Yuyang;Zhang, Ruirui;Yang, Liang;Song, Sujuan
    • Journal of Information Processing Systems
    • /
    • 제17권4호
    • /
    • pp.818-833
    • /
    • 2021
  • To address the problems of low precision rate, insufficient feature extraction, and poor contextual ability in existing text sentiment analysis methods, a mixed model account of a CNN-BiLSTM-TE (convolutional neural network, bidirectional long short-term memory, and topic extraction) model was proposed. First, Chinese text data was converted into vectors through the method of transfer learning by Word2Vec. Second, local features were extracted by the CNN model. Then, contextual information was extracted by the BiLSTM neural network and the emotional tendency was obtained using softmax. Finally, topics were extracted by the term frequency-inverse document frequency and K-means. Compared with the CNN, BiLSTM, and gate recurrent unit (GRU) models, the CNN-BiLSTM-TE model's F1-score was higher than other models by 0.0147, 0.006, and 0.0052, respectively. Then compared with CNN-LSTM, LSTM-CNN, and BiLSTM-CNN models, the F1-score was higher by 0.0071, 0.0038, and 0.0049, respectively. Experimental results showed that the CNN-BiLSTM-TE model can effectively improve various indicators in application. Lastly, performed scalability verification through a takeaway dataset, which has great value in practical applications.