• Title/Summary/Keyword: Bidirectional LSTM Neural Network

Search Result 50, Processing Time 0.021 seconds

Prediction for Energy Demand Using 1D-CNN and Bidirectional LSTM in Internet of Energy (에너지인터넷에서 1D-CNN과 양방향 LSTM을 이용한 에너지 수요예측)

  • Jung, Ho Cheul;Sun, Young Ghyu;Lee, Donggu;Kim, Soo Hyun;Hwang, Yu Min;Sim, Issac;Oh, Sang Keun;Song, Seung-Ho;Kim, Jin Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.134-142
    • /
    • 2019
  • As the development of internet of energy (IoE) technologies and spread of various electronic devices have diversified patterns of energy consumption, the reliability of demand prediction has decreased, causing problems in optimization of power generation and stabilization of power supply. In this study, we propose a deep learning method, 1-Dimention-Convolution and Bidirectional Long Short-Term Memory (1D-ConvBLSTM), that combines a convolution neural network (CNN) and a Bidirectional Long Short-Term Memory(BLSTM) for highly reliable demand forecasting by effectively extracting the energy consumption pattern. In experimental results, the demand is predicted with the proposed deep learning method for various number of learning iterations and feature maps, and it is verified that the test data is predicted with a small number of iterations.

Korean Semantic Role Labeling with Highway BiLSTM-CRFs (Highway BiLSTM-CRFs 모델을 이용한 한국어 의미역 결정)

  • Bae, Jangseong;Lee, Changki;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.159-162
    • /
    • 2017
  • Long Short-Term Memory Recurrent Neural Network(LSTM RNN)는 순차 데이터 모델링에 적합한 딥러닝 모델이다. Bidirectional LSTM RNN(BiLSTM RNN)은 RNN의 그래디언트 소멸 문제(vanishing gradient problem)를 해결한 LSTM RNN을 입력 데이터의 양 방향에 적용시킨 것으로 입력 열의 모든 정보를 볼 수 있는 장점이 있어 자연어처리를 비롯한 다양한 분야에서 많이 사용되고 있다. Highway Network는 비선형 변환을 거치지 않은 입력 정보를 히든레이어에서 직접 사용할 수 있게 LSTM 유닛에 게이트를 추가한 딥러닝 모델이다. 본 논문에서는 Highway Network를 한국어 의미역 결정에 적용하여 기존 연구 보다 더 높은 성능을 얻을 수 있음을 보인다.

  • PDF

Korean Semantic Role Labeling with Highway BiLSTM-CRFs (Highway BiLSTM-CRFs 모델을 이용한 한국어 의미역 결정)

  • Bae, Jangseong;Lee, Changki;Kim, Hyunki
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.159-162
    • /
    • 2017
  • Long Short-Term Memory Recurrent Neural Network(LSTM RNN)는 순차 데이터 모델링에 적합한 딥러닝 모델이다. Bidirectional LSTM RNN(BiLSTM RNN)은 RNN의 그래디언트 소멸 문제(vanishing gradient problem)를 해결한 LSTM RNN을 입력 데이터의 양 방향에 적용시킨 것으로 입력 열의 모든 정보를 볼 수 있는 장점이 있어 자연어처리를 비롯한 다양한 분야에서 많이 사용되고 있다. Highway Network는 비선형 변환을 거치지 않은 입력 정보를 히든레이어에서 직접 사용할 수 있게 LSTM 유닛에 게이트를 추가한 딥러닝 모델이다. 본 논문에서는 Highway Network를 한국어 의미역 결정에 적용하여 기존 연구 보다 더 높은 성능을 얻을 수 있음을 보인다.

  • PDF

Transition-Based Korean Dependency Parsing using Bidirectional LSTM (Bidirectional LSTM을 이용한 전이기반 한국어 의존 구문분석)

  • Ha, Tae-Bin;Lee, Tae-Hyeon;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.527-529
    • /
    • 2018
  • 초기 자연언어처리에 FNN(Feedforward Neural Network)을 적용한 연구들에 비해 LSTM(Long Short-Term Memory)은 현재 시점의 정보뿐만 아니라 이전 시점의 정보를 담고 있어 문장을 이루는 어절들, 어절을 이루는 형태소 등 순차적인(sequential) 데이터를 처리하는데 좋은 성능을 보인다. 본 논문에서는 스택과 버퍼에 있는 어절을 양방향 LSTM encoding을 이용한 representation으로 표현하여 전이기반 의존구문분석에 적용하여 현재 UAS 89.4%의 정확도를 보였고, 자질 추가 및 정제작업을 통해 성능이 개선될 것으로 보인다.

  • PDF

Chinese-clinical-record Named Entity Recognition using IDCNN-BiLSTM-Highway Network

  • Tinglong Tang;Yunqiao Guo;Qixin Li;Mate Zhou;Wei Huang;Yirong Wu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1759-1772
    • /
    • 2023
  • Chinese named entity recognition (NER) is a challenging work that seeks to find, recognize and classify various types of information elements in unstructured text. Due to the Chinese text has no natural boundary like the spaces in the English text, Chinese named entity identification is much more difficult. At present, most deep learning based NER models are developed using a bidirectional long short-term memory network (BiLSTM), yet the performance still has some space to improve. To further improve their performance in Chinese NER tasks, we propose a new NER model, IDCNN-BiLSTM-Highway, which is a combination of the BiLSTM, the iterated dilated convolutional neural network (IDCNN) and the highway network. In our model, IDCNN is used to achieve multiscale context aggregation from a long sequence of words. Highway network is used to effectively connect different layers of networks, allowing information to pass through network layers smoothly without attenuation. Finally, the global optimum tag result is obtained by introducing conditional random field (CRF). The experimental results show that compared with other popular deep learning-based NER models, our model shows superior performance on two Chinese NER data sets: Resume and Yidu-S4k, The F1-scores are 94.98 and 77.59, respectively.

Combining 2D CNN and Bidirectional LSTM to Consider Spatio-Temporal Features in Crop Classification (작물 분류에서 시공간 특징을 고려하기 위한 2D CNN과 양방향 LSTM의 결합)

  • Kwak, Geun-Ho;Park, Min-Gyu;Park, Chan-Won;Lee, Kyung-Do;Na, Sang-Il;Ahn, Ho-Yong;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.681-692
    • /
    • 2019
  • In this paper, a hybrid deep learning model, called 2D convolution with bidirectional long short-term memory (2DCBLSTM), is presented that can effectively combine both spatial and temporal features for crop classification. In the proposed model, 2D convolution operators are first applied to extract spatial features of crops and the extracted spatial features are then used as inputs for a bidirectional LSTM model that can effectively process temporal features. To evaluate the classification performance of the proposed model, a case study of crop classification was carried out using multi-temporal unmanned aerial vehicle images acquired in Anbandegi, Korea. For comparison purposes, we applied conventional deep learning models including two-dimensional convolutional neural network (CNN) using spatial features, LSTM using temporal features, and three-dimensional CNN using spatio-temporal features. Through the impact analysis of hyper-parameters on the classification performance, the use of both spatial and temporal features greatly reduced misclassification patterns of crops and the proposed hybrid model showed the best classification accuracy, compared to the conventional deep learning models that considered either spatial features or temporal features. Therefore, it is expected that the proposed model can be effectively applied to crop classification owing to its ability to consider spatio-temporal features of crops.

Video Saliency Detection Using Bi-directional LSTM

  • Chi, Yang;Li, Jinjiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2444-2463
    • /
    • 2020
  • Significant detection of video can more rationally allocate computing resources and reduce the amount of computation to improve accuracy. Deep learning can extract the edge features of the image, providing technical support for video saliency. This paper proposes a new detection method. We combine the Convolutional Neural Network (CNN) and the Deep Bidirectional LSTM Network (DB-LSTM) to learn the spatio-temporal features by exploring the object motion information and object motion information to generate video. A continuous frame of significant images. We also analyzed the sample database and found that human attention and significant conversion are time-dependent, so we also considered the significance detection of video cross-frame. Finally, experiments show that our method is superior to other advanced methods.

The Method for Generating Recommended Candidates through Prediction of Multi-Criteria Ratings Using CNN-BiLSTM

  • Kim, Jinah;Park, Junhee;Shin, Minchan;Lee, Jihoon;Moon, Nammee
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.707-720
    • /
    • 2021
  • To improve the accuracy of the recommendation system, multi-criteria recommendation systems have been widely researched. However, it is highly complicated to extract the preferred features of users and items from the data. To this end, subjective indicators, which indicate a user's priorities for personalized recommendations, should be derived. In this study, we propose a method for generating recommendation candidates by predicting multi-criteria ratings from reviews and using them to derive user priorities. Using a deep learning model based on convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM), multi-criteria prediction ratings were derived from reviews. These ratings were then aggregated to form a linear regression model to predict the overall rating. This model not only predicts the overall rating but also uses the training weights from the layers of the model as the user's priority. Based on this, a new score matrix for recommendation is derived by calculating the similarity between the user and the item according to the criteria, and an item suitable for the user is proposed. The experiment was conducted by collecting the actual "TripAdvisor" dataset. For performance evaluation, the proposed method was compared with a general recommendation system based on singular value decomposition. The results of the experiments demonstrate the high performance of the proposed method.

Ship Motion-Based Prediction of Damage Locations Using Bidirectional Long Short-Term Memory

  • Son, Hye-young;Kim, Gi-yong;Kang, Hee-jin;Choi, Jin;Lee, Dong-kon;Shin, Sung-chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.295-302
    • /
    • 2022
  • The initial response to a marine accident can play a key role to minimize the accident. Therefore, various decision support systems have been developed using sensors, simulations, and active response equipment. In this study, we developed an algorithm to predict damage locations using ship motion data with bidirectional long short-term memory (BiLSTM), a type of recurrent neural network. To reflect the low frequency ship motion characteristics, 200 time-series data collected for 100 s were considered as input values. Heave, roll, and pitch were used as features for the prediction model. The F1-score of the BiLSTM model was 0.92; this was an improvement over the F1-score of 0.90 of a prior model. Furthermore, 53 of 75 locations of damage had an F1-score above 0.90. The model predicted the damage location with high accuracy, allowing for a quick initial response even if the ship did not have flood sensors. The model can be used as input data with high accuracy for a real-time progressive flooding simulator on board.

Predicting Win-Loss of League of Legends Using Bidirectional LSTM Embedding (양방향 순환신경망 임베딩을 이용한 리그오브레전드 승패 예측)

  • Kim, Cheolgi;Lee, Soowon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.2
    • /
    • pp.61-68
    • /
    • 2020
  • E-sports has grown steadily in recent years and has become a popular sport in the world. In this paper, we propose a win-loss prediction model of League of Legends at the start of the game. In League of Legends, the combination of a champion statistics of the team that is made through each player's selection affects the win-loss of the game. The proposed model is a deep learning model based on Bidirectional LSTM embedding which considers a combination of champion statistics for each team without any domain knowledge. Compared with other prediction models, the highest prediction accuracy of 58.07% was evaluated in the proposed model considering a combination of champion statistics for each team.