• Title/Summary/Keyword: Bidirectional

Search Result 1,407, Processing Time 0.033 seconds

Controller Optimization for Bidirectional Power Flow in Medium-Voltage DC Power Systems

  • Chung, Il-Yop;Liu, Wenxin;Cartes, David A.;Cho, Soo-Hwan;Kang, Hyun-Koo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.750-759
    • /
    • 2011
  • This paper focuses on the control of bidirectional power flow in the electric shipboard power systems, especially in the Medium-Voltage Direct Current (MVDC) shipboard power system. Bidirectional power control between the main MVDC bus and the local zones can improve the energy efficiency and control flexibility of electric ship systems. However, since the MVDC system contains various nonlinear loads such as pulsed power load and radar in various subsystems, the voltage of the MVDC and the local zones varies significantly. This voltage variation affects the control performance of the bidirectional DC-DC converters as exogenous disturbances. To improve the control performance regardless of uncertainties and disturbances, this paper proposes a novel controller design method of the bidirectional DC-DC converters using $L_1$ control theory and intelligent optimization algorithm. The performance of the proposed method is verified via large-scale real-time digital simulation of a notional shipboard MVDC power system.

Study of Bidirectional DC-DC Converter Interfacing Energy Storage for Vehicle Power Management Using Real Time Digital Simulator (RTDS)

  • Deng, Yuhang;Foo, Simon Y.;Li, Hui
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.479-489
    • /
    • 2011
  • The bidirectional dc-dc converter, being the interface between Energy Storage Element (ESE) and DC bus, is an essential component of the power management system for vehicle applications including electric vehicle (EV), hybrid electric vehicle (HEV), and fuel cell vehicle (FCV). In this paper, a novel multiphase bidirectional dc-dc converter interfacing with battery to supply and absorb the electric energy in the FCV system was studied with the help of real time digital simulator (RTDS). The mathematical models of fuel cell, battery and dc-dc converter were derived. A power management strategy was developed and first simulated in RTDS. A Power Hardware-In-the-Loop (PHIL) simulation using RTDS is then presented. The main challenge of this PHIL is the requirement for a highly dynamic bidirectional Simulation-Stimulation (Sim-Stim) interface. This paper describes three different interface algorithms. The closed-loop stability of the resulting PHIL system is analyzed in terms of time delay and sampling rate. A prototype bidirectional Sim-Stim interface is designed to implement the PHIL simulation.

Demonstration of Bidirectional Services Using MPEG-4 BIFS in Terrestrial DMB Systems

  • Shin, Ji-Tae;Suh, Doug-Young;Jeong, Yong-Chan;Park, Seung-Ho;Bae, Byung-Jun;Ahn, Chung-Hyun
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.583-592
    • /
    • 2006
  • Digital broadcasting technology has developed focusing on multi-channel/multi-media, high-definition quality, and mobility-support. Recently, there has been a clear trend toward bidirectional service with the convergence between broadcasting and communication. The broadcasting viewer is no longer simply a passive receptor but has also become an information generator. Currently, the digital multimedia broadcasting (DMB) specifications are the major standard for portable digital broadcasting and have been establishing the overall guidelines for bidirectional service using the MPEG-4 system. While detailed specifications for DMB systems are not well-established for bidirectional service yet, they share the basic concepts underlying the European Eureka-147 Digital Audio Broadcasting (DAB) system. This paper develops key scenarios for bidirectional service in DMB, describes the signal transaction of broadcasting and return channels, and demonstrates typical scenarios using binary format for scenes (BIFS) in the MPEG-4 system.

  • PDF

Bidirectional Factor of Water Leaving Radiance for Geostationary Orbit (정지궤도를 위한 해면방사휘도$(L_w)$의 양방향 계수 (bidirectional factor) 평가 연구)

  • Park, Jin-Kyu;Han, Hee-Jeong;Mun, Jeong-Eon;Yang, Chan-Su;Ahn, Yu-Hwan
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.181-186
    • /
    • 2006
  • Geostationary Orbit satellite, unlike other sun-synchronous polar-orbit satellites, will be able to take a picture of a large region several times a day (almost with everyone hour interval). For geostationary satellite, the target region is fixed though the location of sun is changed always. However, Sun-synchronous polar-orbit satellites able to take a picture of target region same time a everyday. Thus Ocean signal is almost same. Accordingly, the ocean signal of a given target point is largely dependent on time. In other words, the ocean signal detected by geostationary satellite sensor must translate to the signal of target when both sun and satellite are located in nadir, using another correction model. This correction is performed with a standardization of signal throughout relative geometric relationship among satellite-sun-target points. This relative ratio called bidirectional factor. To find relationship between time and $[L_w]_N$/Bidirectional Factor differences, we are calculate solar position, geometry parameters. And reflectance, total radiance at the top of atmosphere(). And water leaving radiance, normalized water leaving radiance. And calculate bidirectional factor, that is the ratio of $[L_w]_N$ between target region and aiming the point. Then, we can make the bidirectional factor lookup table for one year imaging. So, we suggested for necessary to simulation experiment bidirectional factor in more various condition(wavelength and ocean/air condition).

  • PDF

A 60 GHz Bidirectional Active Phase Shifter with 130 nm CMOS Common Gate Amplifier (130 nm CMOS 공통 게이트 증폭기를 이용한 60 GHz 양방향 능동 위상변화기)

  • Hyun, Ju-Young;Lee, Kook-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1111-1116
    • /
    • 2011
  • In this paper, a 60 GHz bidirectional active phase shifter with 130 nm CMOS is presented by replacing CMOS passive switchs in switched-line type phase shifter with Common Gate Amplifier(bidirectional amplifier). Bidirectional active phase shifter is composed of bidirectional amplifier blocks and passive delay line network blocks. The suitable topology of bidirectional amplifier block is CGA(Common Gate Amplifier) topology and matching circuits of input and output are symmetrical due to design same characteristic of it's forward and reverse way. The direction(forward and reverse way) and amplitude of amplification can be controlled by only one bias voltage($V_{DS}$) using combination bias circuit. And passive delay line network blocks are composed of microstrip line. An 1-bit phase shifter is fabricated by Dongbu HiTek 1P8M 130-nm CMOS technology and simulation results present -3 dB average insertion loss and respectively 90 degree and 180 degree phase shift at 60 GHz.

Development of an Optimized Algorithm for Bidirectional Equalization in Lithium-Ion Batteries

  • Sun, Jinlei;Zhu, Chunbo;Lu, Rengui;Song, Kai;Wei, Guo
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.775-785
    • /
    • 2015
  • Many equalization circuits have been proposed to improve pack performance and reduce imbalance. Although bidirectional equalization topologies are promising in these methods, pre-equalization global equalization strategy is lacking. This study proposes a novel state-of-charge (SoC) equalization algorithm for bidirectional equalizer based on particle swarm optimization (PSO), which is employed to find optimal equalization time and steps. The working principle of bidirectional equalization topologies is analyzed, and the reason behind the application of SoC as a balancing criterion is explained. To verify the performance of the proposed algorithm, a pack with 12 LiFePO4 batteries is applied in the experiment. Results show that the maximum SoC gap is within 2% after equalization, and the available pack capacity is enhanced by 13.2%. Furthermore, a comparison between previously used methods and the proposed PSO equalization algorithm is presented. Experimental tests are performed, and results show that the proposed PSO equalization algorithm requires fewer steps and is superior to traditional methods in terms of equalization time, energy loss, and balancing performance.

Bidirectional dc-to-dc Converter Employing Dual Inductor for Current Ripple Reduction (전류 리플 저감을 위한 듀얼 인덕터 방식의 양방향 dc-to-dc 컨버터)

  • Lee, Gi Yeong;Kang, Feel-soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.531-537
    • /
    • 2018
  • This paper propose a bidirectional dc-to-dc converter employing dual inductor for current ripple reduction. Conventional bidirectional dc-to-dc converter uses a single inductor for two different modes; boost and buck; therefore it is difficult to satisfy the optimized inductance value for each mode. To improve this problem, the proposed converter adds two switches, a diode, and one inductor. By proper switching of the additional switch, the proposed converter operates with a inductor in boost mode, but it works with dual inductor in buck mode. Hence in both modes the proposed bidirectional converter can be operated with optimized inductance values. Most of all the optimized inductance in buck mode can reduce the current ripple and its effective value(rms), which are directly related to the temperature increase resulted in short lifetime of battery. To verify the validity of the proposed approach, we first analyzes the operation of the proposed converter theoretically, and implement computer-aided simulations and experiments using a prototype.

Current Ripple Reduction Method of 3-phase Interleaved Bidirectional DC-DC Converter with the Consideration of Input and Output Voltage Variation (입·출력 전압 변동을 고려한 3상 인터리브드 양방향 DC-DC컨버터의 전류리플 저감 기법)

  • Sun, Daun;Jung, Jae-Hun;Nho, Eui-Cheol;Joung, Gyu-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.427-433
    • /
    • 2016
  • This paper proposes a new method for the current ripple reduction of a three-phase interleaved bidirectional DC-DC converter. Usually, the three-phase interleaved bidirectional DC-DC converter is used for battery charging and discharging to reduce battery current ripple. In V2G application, a PWM AC-DC converter is used to connect the AC power grid and three-phase interleaved bidirectional DC-DC converter for battery charging and discharging. The magnitude of DC link voltage affects the battery current ripple magnitude. Therefore, the magnitude of the battery ripple current is analyzed with variations of battery and DC link voltages. The ripple current magnitude is found to be minimized by controlling the DC link voltage. Simulation and experimental results show the usefulness of the proposed method.

Korean Semantic Role Labeling using Stacked Bidirectional LSTM-CRFs (Stacked Bidirectional LSTM-CRFs를 이용한 한국어 의미역 결정)

  • Bae, Jangseong;Lee, Changki
    • Journal of KIISE
    • /
    • v.44 no.1
    • /
    • pp.36-43
    • /
    • 2017
  • Syntactic information represents the dependency relation between predicates and arguments, and it is helpful for improving the performance of Semantic Role Labeling systems. However, syntax analysis can cause computational overhead and inherit incorrect syntactic information. To solve this problem, we exclude syntactic information and use only morpheme information to construct Semantic Role Labeling systems. In this study, we propose an end-to-end SRL system that only uses morpheme information with Stacked Bidirectional LSTM-CRFs model by extending the LSTM RNN that is suitable for sequence labeling problem. Our experimental results show that our proposed model has better performance, as compare to other models.

Assessment of pushover-based method to a building with bidirectional setback

  • Fujii, Kenji
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.421-443
    • /
    • 2016
  • When conducting seismic assessment of an asymmetric building, it is essential to carry out three-dimensional analysis considering all the possible directions of seismic input. For this purpose, the author proposed a simplified procedure is to predict the largest peak seismic response of an asymmetric building subjected to horizontal bidirectional ground motion acting in an arbitrary angle of incidence in previous study. This simplified procedure has been applied to torsionally stiff (TS) asymmetric buildings with regular elevation. However, the suitability of this procedure to estimate the peak response of an asymmetric building with vertical irregularity, such as an asymmetric building with setback, has not been assessed. In this article, the pushover-based simplified procedure is applied to estimate the peak response of asymmetric buildings with bidirectional setback. Nonlinear dynamic (time-history) analysis of two six-storey asymmetric buildings with bidirectional setback and designed according to strong-column weak beam concept is carried out considering various directions of seismic input, and the results compared with those estimated by the proposed method. The largest peak displacement estimated by the simplified method agrees well with the envelope of the dynamic analysis response. The suitability assessment of the simplified procedure to analysed building models is made as well based on pushover analysis results.