• Title/Summary/Keyword: Bidentate ligand

Search Result 52, Processing Time 0.018 seconds

Interlayered colored iron compounds prepared by reactions of nanoirons with bidentate chelating ligands in laponite

  • Kim, Dong Hwan;Kim, Youhyuk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.2
    • /
    • pp.69-72
    • /
    • 2021
  • The reaction of ammonium ferric sulfate with sodium borohydride in laponite sol yields nanoiron colloidal solution. This solution in air forms transparent yellow brown solution. The resulting solution reacts with bidentate chelating ligands. The reaction products are characterized by UV-Vis absorption spectroscopy and X-ray diffraction. All compounds show metal to ligand charge transfer band in the region of 400~650 nm in UV-Vis absorption spectra. This indicates the formation of iron-ligand complex by air oxidation of nanoiron. Also, XRD patterns exhibit that the iron-ligand complex is intercalated in the interlayer of laponite.

Morphology-controlled synthesis of $BaWO_4$ crystals using bidentate ligands (2자리 리간드를 이용한 $BaWO_4$ 결정의 형태 조절 합성)

  • Ryu, Eun-Kyoung;Huh, Young-Duk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.4
    • /
    • pp.139-144
    • /
    • 2007
  • [ $BaWO_4$ ] crystals were synthesized using bidentate ligands. The reaction parameters such as the concentration of ligand and molar ratio of $[WO_4^{2-}]/[Ba^{2+}]$ played important roles in the formation of $BaWO_4$ crystals with various morphologies. When TMEDA was used as a ligand, the microrods of $BaWO_4$ crystals with length of $15{\sim}20{\mu}m$ were formed via the self assembly of cross-like plates of 250 nm in width and $2{\sim}3{\mu}m$ in length.

Oxovanadium(IV) Complexes Containing VO(ONS) Basic Core: Synthesis, Structure, and Spectroscopic Properties

  • Jang, Yoon-Jung;Lee, Uk;Koo, Bon-Kweon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.72-76
    • /
    • 2005
  • Some mononuclear oxovanadium(IV) complexes having the general formula [VOL(bidentate)] (1-4) of which L is tridentate ONS-donor salicylaldehyde S-methyldithiocarbazate (sal-mdtc$^{2-}$) or salicylaldehyde 4- phenylthiosemicarbazate (sal-phtsc$^{2-}$) and bidentate stands for 2,2'-bipyridyl (bpy) or 1,10-phenanthroline (phen) have been synthesized. The complexes were characterized by elemental analyses, FAB mass, UV, IR spectroscopy, and cyclic voltammetry. Two of the complexes [VO(sal-mdtc)(bpy)] (1) and [VO(sal-mdtc) (phen)] (2) were crystallographically characterized. The structures revealed that vanadium atom is octahedrally coordinated by the O, N, and S donor atoms of the tridentate ligand, the two N atoms of bidentate ligand, and the oxo atom. The oxygen donor, occupying an apical position has a trans-labilizing effect, resulting in elongation of the V-N bond. The cyclic voltammograms of the complexes exhibited one cathodic response in the range −d1.45 $\sim$ −f1.52 V due to the reduction of V(IV) to V(III).

Synthesis and Structural Characterization of Five- and Six-Coordinate Cobalt(Ⅱ) Complexes of Tripodal Liand. Tris-(2-benzimidazolylmethyl)amine

  • 라명수;문무신
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.406-409
    • /
    • 1997
  • The various cobalt(Ⅱ) complexes were synthesized and characterized using tris-(2-benzimidazolylmethyl)amine (ntb) as a ligand where the ntb plays as a tripodal tetradentate ligand to form complexes with a trigonal pyramidal geometry. The complexes have 5 and 6 coordinate cobalt(Ⅱ) ions depending on the additional ligand used. In each complex the additional ligand, chloride anion, or acetate anion occupies the "open" site trans to the apical tertiary nitrogen atom of ntb ligand. Complex 1, [Co(Ⅱ)(ntb)Cl]Cl has a trigonal bipyramidal geometry. This geometry was easily constructed using ntb as a tetradentate ligand and chloride as a monodentate ligand. The complex is isostructural to the corresponding manganese(Ⅱ) complex. Crystal data are as follows: [Co(Ⅱ)(ntb)Cl]Cl·MeOH, 1. triclinic space group P1; a=13.524(2) Å, b=14.037(2) Å, c=17.275(1) Å; α=78.798(9), β=84.159(8)°, γ=65.504(9)°; V=2929.6(6) Å3; Z=4; R1=0.0715, wR2=0.1461 for reflections of I > 2σ(I). Six coordinate complex 2 [Co(ntb)(OAc)](OAc) was synthesized using ntb as a tetradentate ligand and acetate as a bidentate chelating ligand.

Transition Metal Catalyzed Carbonylation of Nitrobenzene for the Synthesis of N,N'-diphenylurea (균일계 전이금속 촉매를 이용한 니트로벤젠의 카르보닐화 반응 연구: N,N'-디페닐우레아 합성)

  • Lee, Chul Woo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1079-1085
    • /
    • 1999
  • An investigation was made of the effect of various transition metal catalysts, ligands, and a promoter on the synthesis of N,N'-diphenylurea(DPU) from nitrobenzene, aniline, and carbon monoxide. Homogeneous Pd and Ni catalysts were found to be highly efficient, giving almost quantitative isolated DPU yields at 100% nitrobenzene conversion. Bidentate ligand, 1,3-bis(diphenylphosphino)proane(dppp) showed much improved activity and significantly different reactivity relative to the usual monodentate $PPh_3$ ligand in the presence of Ni and Pd catalysts. These results were inferred to the effect of the cis coordination of bidentate dppp ligand on the metal. The use of a promoter $Et_4NCl$ was indispensable in the case of $PPh_3$, yet inhibited the reaction if used with dppp. It was possible to reuse the Pd-dppp catalyst system, although the catalytic activity was reduced slowly.

  • PDF

Catalytic Asymmetric Allylic Alkylation with A Novel P-S Bidentate Ligand

  • Gang, Ja Hyo;Yu, Seong Hun;Kim, Ju In;Jo, Hyeong Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.439-443
    • /
    • 1995
  • Both enantiomers of (S)-(-)-2-(diphenylphosphino)-2'-mercapto-1,1'-binaphthyl and their derivatives were obtained by synthesis from racemic 2,2'-dihydroxy-1,1'-binaphthyl and subsequent resolution. The utilities of these ligands were investigated briefly. And among these, S-methyl derivative 15 has proved to be an effective ligand for Pd-catalyzed allylic alkylation.

Geometrical Characteristics and Reactivities of Tetracoordinated Pd Complexes: Mono- and Bidentate Ligands and Charged and Uncharged Ligands

  • Yoo, Jin-Seon;Ha, Dong-Su;Kim, Jae-Sang;Kim, Bong-Gon;Park, Jong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.627-640
    • /
    • 2008
  • The geometrical structures, atomic charges, and relative energies of tetracoordinated Pd complexes [PdCl3Z (Z = Cl-, Br-, OH?-, H2O, NH3, PH3), PdCl2Z2 (Z = Br-, OH?-, H2O, NH3, PH3), PdZ?2X (Z = Cl-, OH?-, H2O, NH3, PH3; X = oxalate, O2-?CCO2-), and PdZ2Y (Z = Cl?-, OH?-, H2O, NH3, PH3; Y = succinate, CO2-?CHCHCO2-?)] and the ligand exchange reactions of the Pd complexes were investigated using the ab initio second order Mller-Plesset perturbation (MP2) and Density Functional Theory (DFT) methods. The geometrical characteristics of the tetracoordinated Pd(II) complexes with mono- and bidentate ligands, the effects of the atomic charges for the charged and uncharged ligands, the (dz2-p ) interactions between the dz2-orbital of Pd(II) and the p -orbital of bidentates, and the relative stabilities between the isomers of PdCl2Z2 and PdZ2Y were investigated in detail. The potential energy surfaces for the ligand exchange reactions used for the conversions of {[PdCl2(NH3)2] + H2O} to {[PdCl(NH3)2(H2O)]+ + Cl?-?} and {[PdCl2(PH3)2] + H2O} to {[PdCl(PH3)2(H2O)]+ + Cl?-?]} were investigated. The geometrical structure variations, molecular orbital variations (HOMO and LUMO), and relative stabilities for the ligand exchange processes were also examined quantitatively.