• Title/Summary/Keyword: Biclustering

Search Result 5, Processing Time 0.017 seconds

A Biclustering Method for Time Series Analysis

  • Lee, Jeong-Hwa;Lee, Young-Rok;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.2
    • /
    • pp.131-140
    • /
    • 2010
  • Biclustering is a method of finding meaningful subsets of objects and attributes simultaneously, which may not be detected by traditional clustering methods. It is popularly used for the analysis of microarray data representing the expression levels of genes by conditions. Usually, biclustering algorithms do not consider a sequential relation between attributes. For time series data, however, bicluster solutions should keep the time sequence. This paper proposes a new biclustering algorithm for time series data by modifying the plaid model. The proposed algorithm introduces a parameter controlling an interval between two selected time points. Also, the pruning step preventing an over-fitting problem is modified so as to eliminate only starting or ending points. Results from artificial data sets show that the proposed method is more suitable for the extraction of biclusters from time series data sets. Moreover, by using the proposed method, we find some interesting observations from real-world time-course microarray data sets and apartment price data sets in metropolitan areas.

Validation Measures of Bicluster Solutions

  • Lee, Young-Rok;Lee, Jeong-Hwa;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.2
    • /
    • pp.101-108
    • /
    • 2009
  • Biclustering is a method to extract subsets of objects and features from a dataset which are characterized in some way. In contrast to traditional clustering algorithms which group objects similar in a whole feature set, biclustering methods find groups of objects which have similar values or patterns in some features. Both in clustering and biclustering, validating how much the result is informative or reliable is a very important task. Whereas validation methods of cluster solutions have been studied actively, there are only few measures to validate bicluster solutions. Furthermore, the existing validation methods of bicluster solutions have some critical problems to be used in general cases. In this paper, we review several well-known validation measures for cluster and bicluster solutions and discuss their limitations. Then, we propose several improved validation indices as modified versions of existing ones.

Macroscopic Biclustering of Gene Expression Data (유전자 발현 데이터에 적용한 거시적인 바이클러스터링 기법)

  • Ahn, Jae-Gyoon;Yoon, Young-Mi;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.3
    • /
    • pp.327-338
    • /
    • 2009
  • A microarray dataset is 2-dimensional dataset with a set of genes and a set of conditions. A bicluster is a subset of genes that show similar behavior within a subset of conditions. Genes that show similar behavior can be considered to have same cellular functions. Thus, biclustering algorithm is a useful tool to uncover groups of genes involved in the same cellular process and groups of conditions which take place in this process. We are proposing a polynomial time algorithm to identify functionally highly correlated biclusters. Our algorithm identifies 1) the gene set that has hidden patterns even if the level of noise is high, 2) the multiple, possibly overlapped, and diverse gene sets, 3) gene sets whose functional association is strongly high, and 4) deterministic biclustering results. We validated the level of functional association of our method, and compared with current methods using GO.

Gene Expression Analysis by Co-evolutionary Biclustering (유전자 발현 분석을 위한 공진화적 바이클러스터링 기법)

  • Joung Je-Gun;Kim Soo-Jin;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.22-24
    • /
    • 2006
  • 마이크로어레이는 전체 유전체 수준의 mRNA 발현 여부에 대한 측정이 가능하다는 점에서 분자생물학의 실험 도구로서 가장 강력한 도구 중에 하나로 부각되어 있다. 현재까지 마이크로어래이의 결과로부터 유사한 발현 패턴을 찾기 위한 여러 가지 바이클러스터링 알고리즘들이 개발되어 왔다. 하지만 대다수의 알고리즘들이 최적의 바이클러스터들을 찾기보다는 일정 수준의 가능한 바이클러스터의 결과만을 제시하고 있다. 본 논문에서는 다른 개체집단들과 상호 진화하는 공진화적 학습에 의한 진화연산 기법을 통하여 유전자-조건의 매트릭스로부터 열과 행을 동시에 클러스터링하는 공진화적 바이클러스터링 알고리즘(co-evolutionary biclustering algorithm: CBA)을 제안하고자 한다. CBA는 유전자발현 데이터에서 유전자-조건의 상호의존적인 부성분들로 구성된 최적화 문제에 적합한 계산방식이라고 할 수 있다. 인간 유전자 발현 데이터에 대한 실험 결과. 제시한 알고리즘은 이전의 알고리즘에 비해 발견한 바이클러스터의 패턴 유사도에 있어서 우수한 성능을 보이고 있다.

  • PDF

FCAnalyzer: A Functional Clustering Analysis Tool for Predicted Transcription Regulatory Elements and Gene Ontology Terms

  • Kim, Sang-Bae;Ryu, Gil-Mi;Kim, Young-Jin;Heo, Jee-Yeon;Park, Chan;Oh, Berm-Seok;Kim, Hyung-Lae;Kimm, Ku-Chan;Kim, Kyu-Won;Kim, Young-Youl
    • Genomics & Informatics
    • /
    • v.5 no.1
    • /
    • pp.10-18
    • /
    • 2007
  • Numerous studies have reported that genes with similar expression patterns are co-regulated. From gene expression data, we have assumed that genes having similar expression pattern would share similar transcription factor binding sites (TFBSs). These function as the binding regions for transcription factors (TFs) and thereby regulate gene expression. In this context, various analysis tools have been developed. However, they have shortcomings in the combined analysis of expression patterns and significant TFBSs and in the functional analysis of target genes of significantly overrepresented putative regulators. In this study, we present a web-based A Functional Clustering Analysis Tool for Predicted Transcription Regulatory Elements and Gene Ontology Terms (FCAnalyzer). This system integrates microarray clustering data with similar expression patterns, and TFBS data in each cluster. FCAnalyzer is designed to perform two independent clustering procedures. The first process clusters gene expression profiles using the K-means clustering method, and the second process clusters predicted TFBSs in the upstream region of previously clustered genes using the hierarchical biclustering method for simultaneous grouping of genes and samples. This system offers retrieved information for predicted TFBSs in each cluster using $Match^{TM}$ in the TRANSFAC database. We used gene ontology term analysis for functional annotation of genes in the same cluster. We also provide the user with a combinatorial TFBS analysis of TFBS pairs. The enrichment of TFBS analysis and GO term analysis is statistically by the calculation of P values based on Fisher’s exact test, hypergeometric distribution and Bonferroni correction. FCAnalyzer is a web-based, user-friendly functional clustering analysis system that facilitates the transcriptional regulatory analysis of co-expressed genes. This system presents the analyses of clustered genes, significant TFBSs, significantly enriched TFBS combinations, their target genes and TFBS-TF pairs.