• Title/Summary/Keyword: Bicarbonate Ions

Search Result 26, Processing Time 0.022 seconds

Hydrogeochemical Characteristics of Spring Water in Halla Mountain Region, Cheju Island (한라산 지역 용천수의 수리지화학적 특성)

  • Youn, Jeung-Su;Park, Sang-Woon
    • Journal of the Korean earth science society
    • /
    • v.21 no.1
    • /
    • pp.81-92
    • /
    • 2000
  • The purpose of this study is to elucidate the characteristic of this study is of attitudinal variation of water quality for nine representative springs in the Halla mountain region. The evolutional processes of the spring water also have been studied. Results of hydrogeochemical analyses show that Gwaneumsa spring is very high in pH. The spring waters from Yungsil, Namguksunwon, Sungpanark Oremok and Gwaneumsa which springs situated lower than 1000m in altitude are relatively high concentrations in chloride, sulphate, nitrate nitrogen and sodium ions, indicating that they are affected by surrounding pollution sources. The concentrations of bicarbonate, sulphate and hydrogen ions in spring waters increase when the precipitation increases, whereas the concentrations of nitrate nitrogen, chloride and calcium ions decrease with increasing amounts of precipitation. The magnesium, sodium and electrical conductivity are nearly independent of the precipitation. The spring waters in the Halla mountain region belong to the groups of sodium or potassium type and bicarbonate type, except the Baegrogdam and Wiseorm spring water.

  • PDF

The Influence of Coexisting Material on the Photocatalytic Removal of Humic Acid (광촉매를 이용한 Humic Acid 광부해시 공존물질이 광분해에 미치는 영향)

  • Ryu, Seong Pil;Hyeon, Gyeong Ja;O, Yun Geun
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.279-288
    • /
    • 2004
  • This study aimed at improving the $TiO_2$ photocatalytic degradation of HA. A set of tests was first conducted in the dark to study the adsorption of HA at different coexisting material concentration. Adsorption rate increased with adding cation ion but decreased with adding bicarbonate ion. The photodegradation of HA in the presence of UV irradiation was investigated as a function of different experimental condition: initial concentration of HA, $TiO_2$ weight, pH, air flow rate and coexisting material. It was increased either at low pH or by adding cation ion. The increase of cation strength in aqueous solution could provide a favorable condition for adsorption of HA on the $TiO_2$ surface and therefore enhance the photodegradation rate. It was found that bicarbonate ions slowed down the degradation rate by scavening the hydroxyl radicals.

Capture and Ocean Storage of Carbon Dioxide Using Alkaline Wastes and Seawater (알칼리성 폐기물과 해수를 이용한 이산화탄소 포집 및 해양저장)

  • Lee, Junghyun;Park, Misun;Joo, Jisun;Gil, Joon-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.3
    • /
    • pp.149-154
    • /
    • 2017
  • We investigate the availability of $CO_2$ ocean storage by means of chemical conversion of $CO_2$ to the dissolved inorganic carbon (mainly the bicarbonate ion) in seawater. The accelerated weathering of limestone (AWL) technique, which is accelerating the natural $CO_2$ uptake process through the chemical conversion using limestone and seawater, was proposed as an alternative method for reducing energy-related $CO_2$ emission. The method presented in this paper is slightly different from the AWL method. It involves reacting $CO_2$ with seawater and quicklime obtained from alkaline wastes to produce the bicarbonate-rich solution over 100 times more than seawater, which could be released and diluted into the ocean. The released dense bicarbonate-enriched water mass could subside into the deeper layer because of the density flow, and could be sequestrated stably in the ocean.

Biochemical Characterization of 1-Aminocyclopropane-1-Carboxylate Oxidase in Mung Bean Hypocotyls

  • Jin, Eon-Seon;Lee, Jae-Hyeok;Kim, Woo-Taek
    • BMB Reports
    • /
    • v.31 no.1
    • /
    • pp.70-76
    • /
    • 1998
  • The final step in ethylene biosynthesis is catalyzed by the enzyme 1-aminocyclopropane-1-carboxylate (ACC) oxidase. ACC oxidase was extracted from mung bean hypocotyls and its biochemical characteristics were determined. In vitro ACC oxidase activity required ascorbate and $Fe^{2+}$, and was enhanced by sodium bicarbonate. Maximum specific activity (approximately 20 nl ethylene $h^{-1}$ mg $protein^{-1}$) was obtained in an assay medium containing 100 mM MOPS (pH 7.5), $25\;{\mu}M$ $FeSO_4$, 6 mM sodium ascorbate, 1 mM ACC, 5 mM sodium bicarbonate and 10% glycerol. The apparent $K_m$ for ACC was $80{\pm}3\;{\mu}M$. Pretreating mung bean hypocotyls with ethylene increased in vitro ACC oxidase activity twofold. ACC oxidase activity was strongly inhibited by metal ions such as $Co^{2+}$, $Cu^{2+}$, $Zn^{2+}$, and $Mn^{2+}$, and by salicylic acid. Inactivation of ACC oxidase by salicylic acid could be overcome by increasing the $Fe^{2+}$ concentration of the assay medium. The possible mode of inhibition of ACC oxidase activity by salicylic acid is discussed.

  • PDF

THE EFFECTS OF IONS AND BUFFER SOLUTIONS ON THE MRNA EXPRESSION OF gtfD GENE OF Streptococcus mutans (Streptococcus mutans의 gtfD 유전자 발현에 대한 이온 및 완충액의 영향)

  • Kim, Bo-Young;Kim, Shin;Chung, Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.2
    • /
    • pp.314-322
    • /
    • 2004
  • The production of a glucan was affected by the concentration of ions and buffer solutions, and nutrients in an oral cavity. In this study, the effects of ions and buffer solutions on the mRNA expression of gtfD gene in Streptococcus mutans, an important causative agent of dental caries, were investigated by Fluorescent in situ hybridization(FISH). At first, ions and buffer solutions had little effect on the multiplication of Streptococcus mutans. The green fluorescence according to the mRNA expression of gtfD gene was detected in the BHI broth containing 1% sucrose. The intensities of the green fluorescence were strong at 0.25mM of $CaCl_2$. Little fluorescence was detected by the addition of KCl, except far 10mM KCl at which fluorescence intensities were similar to those of the control. Fluorescence intensities were weak at each concentration of $MgCl_2$ when compared to the control. As for buffer solutions, fluorescence intensities were similar to those of the control at each concentration of buffer solutions, except that they were little detected at 100mM of potassium phosphate.

  • PDF

Electrochemical Method for Measurement of Hydroxide Ion Conductivity and CO2 Poisoning Behavior of Anion Exchange Membrane (음이온 교환막의 정확한 OH-전도도 및 CO2 피독 효과 분석을 위한 전기화학적 측정법)

  • Kim, Suyeon;Kwon, Hugeun;Lee, Hyejin;Jung, Namgee;Bae, Byungchan;Shin, Dongwon
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.2
    • /
    • pp.88-94
    • /
    • 2022
  • The anion exchange membrane used in alkaline membrane fuel cells transports hydroxide ions, and ion conductivity affects fuel cell performance. Thus, the measurement of absolute hydroxide ion conductivity is essential. However, it is challenging to accurately measure hydroxide ion conductivity since hydroxide ions are easily poisoned in the form of bicarbonate by carbon dioxide in the atmosphere. In this study, we applied electrochemical ion exchange treatment to measure the absolute hydroxide ion conductivity of the anion exchange membrane. In addition, we investigated the effect of carbon dioxide poisoning of hydroxide ions on electrochemical performance by measuring bicarbonate conductivity. Commercial anion exchange membranes (FAA-3-50 and Orion TM1) and polyphenylene-based block copolymer (QPP-6F) were used.

Cooling and Antisolvent Crystallization of Potassium Bicarbonate in the Presence of Sterically Hindered Alkanolamines (입체 장애 알카놀아민 혼합 수용액에서 중탄산칼륨 결정의 냉각 반용매 결정화)

  • Jo, Chang Sin;Jung, Taesung;Yoon, Hyoung Chul;Kim, Jong-Nam;Rhee, Young Woo
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.383-389
    • /
    • 2014
  • $CO_2$ absorption processes have a good potential for large scale capture of $CO_2$ but a large amount of absorbing solution has to be regenerated, undesirably increasing the consumption of energy such as sensible heat and latent heat of vaporization. In this study, a cooling crystallization process which would separate the $CO_2$-rich potassium bicarbonate crystals from $CO_2$-lean water was developed to reduce the energy penalty. Sterically hindered alkanolamine additives were used to enhance the $CO_2$ removal efficiency and their antisolvent effect on the crystallization was found in a continuous cooling crystallizer. The production yields of crystals were increased in the sequence of 2-amino-2-methyl-1-propanol (AMP) < 2-amino-2-methyl-1,3-propanediol (AMPD) < 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD), which are related to the number of hydroxyl groups in the additive molecules. Using $^{13}carbon$ nuclear magnetic resonance, the additives favored the formation of bicarbonate ions by steric hindrance effect and increased the supersaturation of $KHCO_3$. It is shown that the additives increase the mean size of crystals and crystal growth rate by increasing supersaturation. The additives are promising for enhancing the $CO_2$ removal efficiency and reducing the regeneration energy cost of $CO_2$ absorbing solution by promoting $KHCO_3$ crystallization.

Pitting Corrosion of Inconel Alloy 600 at Elevated Solution Temperatures

  • Park, Jin-Ju;Pyun, Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.271-281
    • /
    • 2003
  • The present article is concerned with pitting corrosion of Inconel alloy 600 at elevated solution temperatures. This article first summarized the previous works on the characteristics and the growth models of oxide film grown on alloy 600 at elevated solution temperatures. Thereafter, this article reviewed previous works on the morphological study on pitting corrosion of alloy 600 as functions of solution temperature and such anion additives as thiosulphate, sulphate, nitrate and bicarbonate ions in terms of pit morphology and its fractal dimension.

Assessment of Groundwater Quality for Irrigation and Agro-based Industrial Usage in Selected Aquifers of Bangladesh

  • Rahman, Md. Mokhlesur;Hoque, Syed Munerul;Jesmin, Sabina;Rahman, Md. Siddiqur;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.98-105
    • /
    • 2005
  • Groundwater sampled from 24 tube wells of three districts namely Sherpur, Gaibandha and Naogaon in Bangladesh was appraised for their water quality for irrigation and agro-based industrial usage. All waters under test were slightly alkaline to alkaline (pH = 7.2 to 8.4) in nature and were not problematic for crop production. As total dissolved solid (TDS), all groundwater samples were classified as fresh water (TDS<1,000 mg/L) in quality. Electrical conductivity (EC) and sodium adsorption ratio (SAR) values reflected that waters under test were under medium salinity (C2), high salinity (C3) and also low alkalinity (S1) hazard classes expressed as C2S1 and C3S1. As regards to EC and soluble sodium percentage (SSP), groundwater samples were graded as good and permissible in category based on soil properties and crop growth. All water samples were free from residual sodium carbonate (RSC) and belonged to suitable in category. Water samples were under soft moderately hard, hard and very hard classes. Manganese, bicarbonate and nitrate ions were considered as major pollutants in some water samples and might pose threat in soil ecosystem for long-term irrigation. For most of the agro-based industrial usage, Fe and Cl were considered as troublesome ions. On the basis of TDS and hardness, groundwater samples were not suitable for specific industry. Some water samples were found suitable for specific industry but none of these waters were suitable for all industries. The relationship between water quality parameters and major ions was established. The correlation between major ionic constituents like Ca, Mg, K, Na, $HCO_3$ and Cl differed significantly. Dominant synergistic relationships were observed between EC-TDS, SAR-SSP, EC-Hardness, TDS-Hardness and RSC-Hardness.

Characteristics of Ion Exchange of Phosphate using Layered Double Hydroxides in Advanced Wastewater Treatment (하수고도처리에서 층상이중수화물을 이용한 인산 이온교환 특성)

  • Song, Ji-Hyun;Shin, Seung-Kyu;Lee, Sang-Hyup;Park, Ki-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.991-995
    • /
    • 2006
  • The layered double hydroxide with the insertion of chloride ions (LDH-Cl), which was synthesized by the co-precipitation method, was applied to investigate the fundamental aspects of the absorptive agent for phosphate removal from wastewater. The adsorption capacity was best described by the Langmuir-FreundIich isotherm, and the estimated isotherm parameters indicate that the LDH-CI capacity for the phosphate removal is much higher than that observed using a natural adsorbent material such iron oxide tailing. The kinetic experiment also showed that the LDH-Cl adsorption reaction rapidly at the adsorptive rate of 0.55 mg-P/g-LDH/min, implying that this adsorbent can be of use in the full-scale applications. The pH had a minimal effect on the LDH adsorption capacity in the range of 5 to 11, although the capacity dropped at the low pHs because of the change in LDH surface properties. Furthermore, other anions such as $Cl^-$ and $NO_3{^-}$ commonly found in the wastewater streams insignificantly affected the phosphate removal efficiencies, while $HCO_3{^-}$ ions had a negative effect on the LDH adsorption capacity due to its high selectivity. The phosphate removal experiment using the actual secondary effluent from a wastewater treatment plant showed the similar decrease in adsorption capacity, indicating that the bicarbonate ions in the wastewater were competing with phosphate for the adsorptive site in the surface of the LDH-Cl. Overall, the synthetic adsorbent material, LDH-Cl, can be a feasible alternative over other conventional chemical agents, since the LDH-Cl exhibits the high phosphate removal capacity with the low sensitivity to other environmental conditions.