• Title/Summary/Keyword: Biaxial strength test

Search Result 93, Processing Time 0.034 seconds

An Experimental Study on Strength Properties, Size Effect, and Fatigue Behaviour of Concrete under Biaxial Flexural Stress State (이방향 휨응력상태의 콘크리트 강도 특성, 크기효과 및 피로거동에 관한 실험적 연구)

  • Zi, Goangseup;Kim, Jihwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.901-907
    • /
    • 2013
  • In this study, flexural strength properties of concrete under biaxial stress state were experimentally investigated. Tests for size effect and fatigue behaviour of concrete under biaxial stress were carried out by the ASTM C 1550 and the biaxial flexure test(BFT). The results given by the biaxial tests were compared to those by the third-point bending test. Test results showed that biaxial flexural strengths obtained from the ASTM C 1550 and the biaxial flexure test are greater than the strength by the third-point bending test. As the size increases, the uniaxial and biaxial flexural strength decreases. However, the slope of the size effect of the biaxial strength was greater than that of the uniaxial strength. Finally, the fatigue response of concrete under the biaxial stress state was similar with that for uniaxial stress state.

Failure Behavior of High Strength Concrete under Uniaxial and Biaxial Compression (고강도 콘크리트의 일축 및 이축 압축하의 파괴거동)

  • Lee, Sang-Kuen;Song, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.223-231
    • /
    • 2002
  • The pilot tests for the development of biaxial failure envelope of high strength concrete of reactor containments were performed. To apply biaxial loads to concrete, the plate specimens were used. The technical difficulties encountered on the development of a suitable biaxial test setup were discussed. To decide the optimum thickness of plate specimen, the nonlinear finite element analyses using ABAQUS were performed for a 1/8 model of cylindrical specimen(${\Phi}150{\times}300$) and four 1/4 models of plate Specimens ($200{\times}200{\times}T$(=30, 50, 60, 70)mm) under uniaxial compression. Analytical values and test data of relative strength ratio between those specimens with different geometric shapes were also compared. The various test data were obtained under uniaxial compression, uniaxial tension, and biaxial compression and then the stress-strain responses were plotted. The test data indicated that the strength of concrete under biaxial compression, $f_1/f_2=-1/-1$, is 15 percent larger than that under uniaxial compression and the poisson's ratio of concrete is 0.16. Teflon pads employed to eliminate friction between test specimen and loading platens showed an excellent effect under biaxial compression.

The Improvement of Biaxial Flexure Test (BFT) Method for Determination of the Biaxial Flexure Tensile Strength of Concrete (콘크리트 이방향 휨인장강도 결정을 위한 이방향 휨인장강도 시험법 개선)

  • Kim, Jihwan;Zi, Goangseup;Oh, Hongseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5A
    • /
    • pp.389-397
    • /
    • 2011
  • In this study, an experiment for the biaxial behavior of specimens was carried out to identify whether the isotropic flexure tensile stress of concrete in the BFT method is feasible. Another experiment for the improvement of the BFT method was conducted to ensure the isotropic flexure tensile stress of BFT specimens during the test. In addition, the biaxial flexure strength of concrete given by the improved BFT method was compared to the uniaxial flexure strength by the four-point bending test. Test results show that the isotropic flexure tensile stress of concrete using the BFT method was highly influenced by the surface conditions and warping of the specimens. Using improved BFT method, we could obtained the isotropic flexure tensile stress of concretes. The biaxial flexure strength of BFT was about 32% greater than the uniaxial flexure strength of the four-point bending test. In the experiment, with the smaller scatter, the improved BFT method gave a reliable biaxial flexure strength like the four-point bending test.

The Experimental Comparison of the Uniaxial and Biaxial Tensile Strengths of Concretes (일축 및 이축 휨인장강도의 실험적 비교)

  • Oh, Hong-Seob;Zi, Goang-Seup
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.139-146
    • /
    • 2008
  • The characteristics of the biaxial flexural tensile strength of concretes was compared to that of the uniaxial strength. The uniaxial and biaxial strengths in this study were obtained from the classical modulus of rupture test and the biaxial flexural test recently developed by Zi and Oh and Zi et al., respectively. Three different sizes were considered to investigate the effect of the size of aggregates. To estimate the stochastic aspect of the strength, 32 specimens were used for each test. The average biaxial flexural fracture strength was about 20% greater than the uniaxial test. At the same time, the coefficient of variation for the biaxial test was 18% greater than the uniaxial test. This means that the probability of the biaxial cracking can be greater than the uniaxial cracking.

Biaxial Fracture Behavior of Alumina Ceramics : Indentation Effect on Ball-on-3-ball Test (압입에 따른 알루미나 세라믹스의 이축 파괴 거동)

  • 정성민;박성은;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.713-720
    • /
    • 2000
  • The biaxial fracture behavior of alumina ceramics was studied using ball-on-3-ball test. The polished surfaces of alumina specimens were indented at 0mm, 1mm, 2mm, 3mm apart from the center of the specimen along path A, passing between the two supporting balls from the center of the specimen, and along path B, passing above the three supporting balls from the center of the specimen. The fracture strength of the indented specimens was measured using the ball-on-3-ball test, a kind of biaxial strength test. The fracture strength increased with increasing the distance from the center to indented position. The fracture strength of the specimen indented along path B was higher than that of the specimens indented along path A. It was presented that the fracture caused by tangential stress rather than radial stress when the indented positions are 1mm and 2mm from the center of the specimen. This phenomenon was in good agreement with FEM analysis.

  • PDF

Behavior of Plain and Steel Fiber Reinforced High Strengh Concrete Under Uniaxial and Biaxial Compression (1축 및 2축 압축을 받는 고강도콘크리트 및 강섬유보강 고강도콘크리트의 거동)

  • Lim, Dong-Hwan;Park, Sung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.5-8
    • /
    • 2005
  • The purpose of this study is to investigate the mechanical characteristics of plain and steel fiber high strength concrete under uniaxial and biaxial loading condition. A number of plain and steel fiber high strength concrete cubes having 28 days compressive strength of 82.7Mpa (12,000psi) were made and tested. Four principal compression stress ratios, and four fiber concentrations were selected as major test variables. From test results, it is shown that confinement stress in minor stress direction has pronounced effect on the strength and deformational behavior. Both of the stiffness and ultimate strength of the plain and fiber high strength concrete increased. The maximum increase of ultimate strength occurred at biaxial stress ratio of 0.5 in the plain high strength concrete and the value were recorded 30 percent over than the strength under uniaxial condition. The failure modes of plain high strength concrete under uniaxial compression were shown as splitting type of failure but steel fiber concrete specimens under biaxial condition showed shear type failure.

  • PDF

The Effect of Etching Time on the Biaxial Flexural Strength of IPS Empress® 2 Ceramic (불산 처리 시간이 IPS Empress® 2 세라믹의 2축 굴곡강도에 미치는 영향에 대한 연구)

  • Kim, Youn-Hwi;Shin, Soo-Yeon;Cho, In-Ho;Lee, Joon-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.4
    • /
    • pp.269-281
    • /
    • 2007
  • Fluoric acid etching is an essential procedure in cementation of reinforced ceramics to tooth surface. But there have been few studies about the changes of surface structure and flexural strength of IPS $Empress^{(R)}$ 2 ceramic according to the etching time. The objectives of this study were to examine the surface structure changes and the difference in biaxial flexural strength of IPS $Empress^{(R)}$ 2 ceramic according to various etching times. Sixty one disk-shaped specimens of IPS $Empress^{(R)}$ 2 ceramic($14mm{\times}1.2mm$) were fabricated for the biaxial flexural strength test and SEM analysis according to the manufacturer's recommendations. Sixty specimens were divided into 6 groups(n=10) according to the time of HF acid etching(0, 20, 180 and 300s)and silane/resin cement application. Each disk was loaded using a piston-on-3 ball biaxial configuration in a universal testing machine. The failure loads(N) were recorded, and the biaxial flexural strength for each disk was calculated. A one-way analysis of variance and independent t-test on transformed fracture strength data were used to determine significant differences between groups. The groups of no cementation showed a trend toward progressive weakening with increasing the etching time. However, this was not statistically significant at p=0.05 level. The groups of resin cementation exhibited no apparent trend in their mean strength values. SEM photomicrographs showed very different results of etching. Within the conditions of this study, alteration of surface topography by acid etching does not have a deleterious effect on the biaxial flexural strength of IPS $Empress^{(R)}$ 2 ceramic.

Experimental Study on Failure Behavior of Plain Concrete - Biaxial Stress Test (콘크리트 파괴거동특성의 실험적 연구I-이축응력시험)

  • 이상근;이상민;박상순;한상훈;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.315-320
    • /
    • 2003
  • Two different strength types of plain concrete plate specimens (200$\times$200$\times$60mm) were tested under different biaxial load combinations. The specimens were subjected to biaxial combinations covering the three regions of compression-compression, compression-tension, and tension-tension. The loading platens with Teflon pads were used to reduce a confining effect in boundary surface between the concrete specimen and the solid platen. The principal deformations in the specimens were recorded, and the failure modes along with each stress ratio were examined. Based on the strength data, the failure envelops were developed for each type of plain concrete. The biaxial stress-strain responses of concrete plate specimens for three biaxial loading regions were also plotted. The test data indicated that the strength of concrete under biaxial compression ($f_2 / f_1$$_1$=-1/-1) is about 17 percent larger than under uniaxial compression.

  • PDF

An Experimental Study of Square High Strength Concrete Column Sections under Axial Compression and Biaxial Bending (축력과 이축휨을 받는 정사각형 단면의 고강도 콘크리트 기둥에 대한 실험적 연구)

  • 조문희;이종원;한경돈;유석형;반병열;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.35-40
    • /
    • 2001
  • The exact solution of strength of reinforced concrete RC columns subjected to axial compression combined with biaxial bending needs trial and adjustment procedure to find the depth and inclination of the neutral axis. Thus, approximate methods of analysis and design for biaxial bending are used in practice. Load contour interprets the relation of biaxial bending and equivalent uniaxial bending by u factor which is related to material properties and column shapes. The purpose of this study is to investigate the behavior of high strength RC columns subjected to the combined axial compression and biaxial bending. Fifteen test specimens with dimensions of 200mm$\times$200mm and 4-Dl3 longitudinal steel were examined. The variable of the test is compressive strength of concrete (350, 585, 650kgf/$cm^{2}$), compression load ratio (0.2$P_{o}}$, 0.35$P_{o}}$, 0.5$P_{o}}$), and inclination of loading ($\theta$=0, 22.5, $45^{\circ}$). Test results of coefficient $\alpha$ depending on the compressive strength of concrete are compared with ACI code.

  • PDF

The Biaxial Flexure Test(BFT) method and its finite element analysis (이방향 휨인장 시험(Biaxial Flexure Test; BFT) 및 삼차원 유한요소 해석)

  • Kim, Ji-Hwan;Zi, Goang-Seup;Kang, Jin-Gu;Oh, Hong-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.693-696
    • /
    • 2008
  • The biaxial tensile strength of concretes was measured by the Biaxial Flexure Test(BFT) which was recently developed to measure the biaxial tensile strength of concretes. From the test result, The circular specimen is generally fractured after 1${\sim}$3 of the initial crack were formed on the top of specimen. The direction and number of the initial crack was completely arbitrary. As the specimen was larger, the number of the crack increased. And, the strengths of the different radii and thickness of specimens were calculated by the commercial finite element program to study the size effect of the biaxial tensile strength like the uniaxial tensile strength. The parameters such as radii to the support and to the load point, were studied using the program. The results of the FE analysis were entirely consistent with the predictive solution, when b/a>0.4, and the thickness of the specimens were increased. On the other hands, those with lesser free length showed good results.

  • PDF