• Title/Summary/Keyword: Biaxial strain

Search Result 139, Processing Time 0.057 seconds

Stress-Strain Response and Fracture of a Plain Concrete in Biaxial Loading (이축 하중을 받는 콘크리트의 응력-변형률 응답 및 파괴)

  • 이상근;송영철;권용길;한상훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.921-926
    • /
    • 2001
  • In this paper the biaxial failure criteria and stress-strain response for plain concrete are studied under uniaxial and biaxial stress(compression-compression, compression-tension, and tension-tension combined stress). The concrete specimens of a square plate type are used for uniaxial and biaxial loading. The experimental data indicate that the strength of concrete under biaxial compression, f2/fl=-l/-1, is 17 percent larger than under uniaxial compression and the poisson's ratio of concrete is 0.1745. On the base of the results, a biaxial failure envelope for plain concrete that the uniaxial strength is 398kgf/$cm^{2}$ are developed. The biaxial failure behaviors for three biaxial loading areas are also plotted respectively. In addition, the characteristics of stress-strain response under biaxial compression are compared and verified with the experimental and analytical results.

  • PDF

이중하중을 받는 S45C의 피로거동에 관한 연구

  • 윤두연;이원석;이현우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.268-273
    • /
    • 1992
  • Thin walled tubular specimens of 0.45% structural carbon steel were used in the bizxial tests. Biaxial fatigue tosts were conducted on strain control including fully reversed tension-compression and in phase tension torsion loadings. The predictions of the biaxial fatigue life were based upon the uniaxial low cycle fatigue test results. Fatigue lives were ranged from 10$\^$2/to 10$\^$5/cycles. Four multiaxial strain based theories have been developed to correlate biaxial fatigue experimdntal results. These theories showed good correlatins except for maximum shear strain theory. In uniaxial tests, crack behavior was observed that crack initiated in the maximum shear strain direction and propagated in the direction perpendicular to principal stross. But, in biaxial tests, both crack initiation and growth occured on the maximum shear strain direction only.

A Study on the Equi-biaxial Tension Test of Rubber Material (고무재료의 등 이축 인장시험에 관한 연구)

  • 김완두;김동진;김완수;이영신
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.95-104
    • /
    • 2003
  • The material properties of rubber was determined by the experiments of uniaxial tension, uniaxial compression, planer tension, equi-biaxial tension and volumetric compression. In compression test, it is difficult to obtain the pure state of compression stress and strain due to friction force between the specimen and compression platen. In this study, the stress and strain data from the equi-biaxial tension test were converted to compression stress and strain and compared to a pure state of simple compression data when friction was zero. The compression test device with the tapered platen was proposed to overcome the effect of friction. It was fumed out that the relationship of the stress and strain using the tapered platen was in close agreement with the pure compressive state.

Tension stiffening effect of RC panels subject to biaxial stresses

  • Kwak, Hyo-Gyoung;Kim, Do-Yeon
    • Computers and Concrete
    • /
    • v.1 no.4
    • /
    • pp.417-432
    • /
    • 2004
  • An analytical model which can simulate the post-cracking nonlinear behavior of reinforced concrete (RC) members such as bars and panels subject to uniaxial and biaxial stresses is presented. The proposed model includes the description of biaxial failure criteria and the average stress-strain relation of reinforcing steel. Based on strain distribution functions of steel and concrete after cracking, a criterion to consider the tension-stiffening effect is proposed using the concept of average stresses and strains. The validity of the introduced model is established by comparing the analytical predictions for reinforced concrete uniaxial tension members with results from experimental studies. In advance, correlation studies between analytical results and experimental data are also extended to RC panels subject to biaxial tensile stresses to verify the efficiency of the proposed model and to identify the significance of various effects on the response of biaxially loaded reinforced concrete panels.

A Study on the Equi-biaxial Tension Test of Rubber Material (고무재료의 이축 인장시험에 관한 연구)

  • Kim, Dong-Jin;Kim, Wan-Doo;Kim, Wan-Soo;Lee, Young-Shin
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.425-430
    • /
    • 2003
  • The material properties of rubber was determined by the experiments of uniaxial tension, uniaxial compression, planer tension, equi-biaxial tension and volumetric compression. In compression test, it is difficult to obtain the pure state of compression stress and strain due to friction force between the specimen and compression platen. In this study, the stress and strain data from the equi-biaxial tension test were converted to compression stress and strain and compared to a perfect state of simple compression data when friction was zero. The compression test device with the tapered platen was proposed to overcome the effect of friction. It was turned out that the relationship of the stress and strain using the tapered platen was in close agreement with the pure compressive state.

  • PDF

Prediction of Mechanical Behavior for Carbon Black Added Natural Rubber Using Hyperelastic Constitutive Model

  • Kim, Beomkeun
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.308-316
    • /
    • 2016
  • The rubber materials are widely used in automobile industry due to their capability of a large amount of elastic deformation under a force. Current trend of design process requires prediction of functional properties of parts at early stage. The behavior of rubber material can be modeled using strain energy density function. In this study, five different strain energy density functions - Neo-Hookean model, Reduced Polynomial $2^{nd}$ model, Ogden $3^{rd}$ model, Arruda Boyce model and Van der Waals model - were used to estimate the behavior of carbon black added natural rubber under uniaxial load. Two kinds of tests - uniaxial tension test and biaxial tension test - were performed and used to correlate the coefficients of the strain energy density function. Numerical simulations were carried out using finite element analysis and compared with experimental results. Simulation revealed that Ogden $3^{rd}$ model predicted the behavior of carbon added natural rubber under uniaxial load regardless of experimental data selection for coefficient correlation. However, Reduced Polynomial $2^{nd}$, Ogden $3^{rd}$, and Van der Waals with uniaxial tension test and biaxial tension test data selected for coefficient correlation showed close estimation of behavior of biaxial tension test. Reduced Polynomial $2^{nd}$ model predicted the behavior of biaxial tension test most closely.

Plastic Deformation Characteristic of AZ31 Magnesium alloy Sheet (AZ31 마그네슘 합금판재의 소성변형특성)

  • Park J. G.;Kim Y. S.;Kuwabara Toshihiko;You B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.64-68
    • /
    • 2005
  • In recent years, there has been a growth of the manufacture and application of magnesium products because of its small specific gravity as well as its relatively high strength. However, there are so many studies to assure good formability because magnesium sheet alloy is difficult to form. In this study, uniaxial tensile and biaxial tensile test of AZ31 magnesium sheet alloy with thickness of 1.2mm were performed at room temperature. Uniaxial tensile test were performed until $7\%$ of engineering strain. R-values and stress-strain curve were obtained. Biaxial tensile tests with cruciform specimen were performed until the breakdown of the specimen occurs. The yield loci are made by application of plastic work theory. The results are compared with the theoretical predictions based on the Hill and Logan-Hosford model. However, next study will be performed at warm-temperature because the specimens are broken under the $0.5\%$ of equivalent strain at biaxial tensile test.

  • PDF

Failure Behavior of High Strength Concrete under Uniaxial and Biaxial Compression (고강도 콘크리트의 일축 및 이축 압축하의 파괴거동)

  • Lee, Sang-Kuen;Song, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.223-231
    • /
    • 2002
  • The pilot tests for the development of biaxial failure envelope of high strength concrete of reactor containments were performed. To apply biaxial loads to concrete, the plate specimens were used. The technical difficulties encountered on the development of a suitable biaxial test setup were discussed. To decide the optimum thickness of plate specimen, the nonlinear finite element analyses using ABAQUS were performed for a 1/8 model of cylindrical specimen(${\Phi}150{\times}300$) and four 1/4 models of plate Specimens ($200{\times}200{\times}T$(=30, 50, 60, 70)mm) under uniaxial compression. Analytical values and test data of relative strength ratio between those specimens with different geometric shapes were also compared. The various test data were obtained under uniaxial compression, uniaxial tension, and biaxial compression and then the stress-strain responses were plotted. The test data indicated that the strength of concrete under biaxial compression, $f_1/f_2=-1/-1$, is 15 percent larger than that under uniaxial compression and the poisson's ratio of concrete is 0.16. Teflon pads employed to eliminate friction between test specimen and loading platens showed an excellent effect under biaxial compression.

A Study on the Equi-Biaxial Tensile Workability for the SPC 3 EN Automobile Killed Steel Sheets (승용차용 SPC 3 EN 킬드 강판의 등 2축 인장 가공성에 관한 연구)

  • 김동원;서대교;김형종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.645-652
    • /
    • 1986
  • For the analysis of equi-biaxial tension, the Lankford values at the various strain levels were measured experimentally at first. It was clarified that the R values depend on strain to a great extent and based on this result, the analysis of the equi-biaxial tension was carried out. Hill's new yield criterion was used to predict the stress-strain curves theoretically. The value of new parameter, m for the coincidence of the theory with the experiment was 2.1. It is desired that the optimum R-value in the case of m=2.1 is measured at strain, 15% for the reasonable correlation between theory and experiment.

Biaxial Tensile Behaviors of Elastomeric Polymer Networks

  • Shinzo, Kohjiya
    • Elastomers and Composites
    • /
    • v.38 no.2
    • /
    • pp.175-179
    • /
    • 2003
  • For the total description of mechanical behaviors of elastomers, it is necessary to know the so-called rheological constitutive equation i.e. the strain-energy density function (W) in case of elastomers, which necessitates biaxial tensile results of elastic body. This paper first describes the experimental results of biaxial tensile measurements on poly(siloxane) model networks. W was estimated from its differential form i.e. the $1^{st}$ differential of W is stress. The W was found to reproduce the experimental stress-strain results, and the W estimated for silica filled poly(siloxane) networks suggest a different behavior between conventional precipitated silica and in situ formed silica. The difference suggests the different surface property of the two silicas.