• Title/Summary/Keyword: Bias-Correction

Search Result 270, Processing Time 0.023 seconds

Accuracy Comparison of GPT and SBAS Troposphere Models for GNSS Data Processing

  • Park, Kwan-Dong;Lee, Hae-Chang;Kim, Mi-So;Kim, Yeong-Guk;Seo, Seung Woo;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.3
    • /
    • pp.183-188
    • /
    • 2018
  • The Global Navigation Satellite System (GNSS) signal gets delayed as it goes through the troposphere before reaching the GNSS antenna. Various tropospheric models are being used to correct the tropospheric delay. In this study, we compared effectiveness of two popular troposphere correction models: Global Pressure and Temperature (GPT) and Satellite-Based Augmentation System (SBAS). One-year data from a particular site was chosen as the test case. Tropospheric delays were computed using the GPT and SBAS models and compared with the International GNSS Service tropospheric product. The bias of SBAS model computations was 3.4 cm, which is four times lower than that of the GPT model. The cause of higher biases observed in the GPT model is the fact that one cannot get wet delays from the model. If SBAS-based wet delays are added to the hydrostatic delays computed using the GPT model, then the accuracy is similar to that of the full SBAS model. From this study, one can conclude that it is better to use the SBAS model than to use the GPT model in the standard code-pseudorange data processing.

Predictability for Heavy Rainfall over the Korean Peninsula during the Summer using TIGGE Model (TIGGE 모델을 이용한 한반도 여름철 집중호우 예측 활용에 관한 연구)

  • Hwang, Yoon-Jeong;Kim, Yeon-Hee;Chung, Kwan-Young;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.22 no.3
    • /
    • pp.287-298
    • /
    • 2012
  • The predictability of heavy precipitation over the Korean Peninsula is studied using THORPEX Interactive Grand Global Ensemble (TIGGE) data. The performance of the six ensemble models is compared through the inconsistency (or jumpiness) and Root Mean Square Error (RMSE) for MSLP, T850 and H500. Grand Ensemble (GE) of the three best ensemble models (ECMWF, UKMO and CMA) with equal weight and without bias correction is consisted. The jumpiness calculated in this study indicates that the GE is more consistent than each single ensemble model. Brier Score (BS) of precipitation also shows that the GE outperforms. The GE is used for a case study of a heavy rainfall event in Korean Peninsula on 9 July 2009. The probability forecast of precipitation using 90 members of the GE and the percentage of 90 members exceeding 90 percentile in climatological Probability Density Function (PDF) of observed precipitation are calculated. As the GE is excellent in possibility of potential detection of heavy rainfall, GE is more skillful than the single ensemble model and can lead to a heavy rainfall warning in medium-range. If the performance of each single ensemble model is also improved, GE can provide better performance.

Improved Margin of Absorber Pattern Sidewall Angle Using Phase Shifting Extreme Ultraviolet Mask (위상변위 극자외선 마스크의 흡수체 패턴의 기울기에 대한 오차허용도 향상)

  • Jang, Yong Ju;Kim, Jung Sik;Hong, Seongchul;Ahn, Jinho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.32-37
    • /
    • 2016
  • Sidewall angle (SWA) of an absorber stack in extreme ultraviolet lithography mask is considered to be $90^{\circ}$ ideally, however, it is difficult to obtain $90^{\circ}$ SWA because absorber profile is changed by complicated etching process. As the imaging performance of the mask can be varied with this SWA of the absorber stack, more complicated optical proximity correction is required to compensate for the variation of imaging performance. In this study, phase shift mask (PSM) is suggested to reduce the variation of imaging performance due to SWA change by modifying mask material and structure. Variations of imaging performance and lithography process margin depending on SWA were evaluated through aerial image and developed resist simulations to confirm the advantages of PSM over the binary intensity mask (BIM). The results show that the variations of normalized image log slope and critical dimension bias depending on SWA are reduced with PSM compared to BIM. Process margin for exposure dose and focus was also improved with PSM.

Implementation of Bayesian Filter Method and Range Measurement Analysis for Underwater Robot Localization (수중로봇 위치추정을 위한 베이시안 필터 방법의 실현과 거리 측정 특성 분석)

  • Noh, Sung Woo;Ko, Nak Yong;Kim, Tae Gyun
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.28-38
    • /
    • 2014
  • This paper verifies the performance of Extended Kalman Filter(EKF) and MCL(Monte Carlo Localization) approach to localization of an underwater vehicle through experiments. Especially, the experiments use acoustic range sensor whose measurement accuracy and uncertainty is not yet proved. Along with localization, the experiment also discloses the uncertainty features of the range measurement such as bias and variance. The proposed localization method rejects outlier range data and the experiment shows that outlier rejection improves localization performance. It is as expected that the proposed method doesn't yield as precise location as those methods which use high priced DVL(Doppler Velocity Log), IMU(Inertial Measurement Unit), and high accuracy range sensors. However, it is noticeable that the proposed method can achieve the accuracy which is affordable for correction of accumulated dead reckoning error, even though it uses only range data of low reliability and accuracy.

Analysis of the Change of Dam Inflow and Evapotranspiration in the Soyanggang Dam Basin According to the AR5 Climate Change Scenarios (AR5 기후변화 시나리오에 따른 소양강댐 유역 댐유입량 및 증발산량의 변화 분석)

  • Do, Yeonsu;Kim, Gwangseob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.89-99
    • /
    • 2018
  • This study analyzed the change of the dam inflow and evapotranspiration in the Soyanggang dam basin using the results of 26 CMIP5 GCMs based on AR5 RCP 4.5 and RCP 8.5 scenarios. The SWAT model was used to simulate the dam inflow and evapotranspiration in the target watershed. The simulation was performed during 2010~2016 as the reference year and during 2010~2099 as the analysis period. Bias correction of input data such as precipitation and air temperature were conducted for the reference period of 2006~2016. Results were analyzed for 3 different periods, 2025s (2010~2040), 2055s (2041~2070), and 2085s (2071~2099). It demonstrated that the change of dam inflow gradually increases 9.5~15.9 % for RCP 4.5 and 13.3~29.8 % for RCP 8.5. The change of evapotranspiration gradually increases 1.6~8.6 % for RCP 4.5 and 1.5~8.5 % for RCP8.5.

Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms Based on GLONASS Code-Pseudorange Measurements

  • Kim, Mi-So;Park, Kwan-Dong;Won, Jihye
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • The purpose of this study is to develop precise point positioning (PPP) algorithms based on GLONASS code-pseudorange, verify their performance and present their utility. As the basic correction models of PPP, we applied Inter Frequency Bias (IFB), relativistic effect, satellite antenna phase center offset, and satellite orbit and satellite clock errors, ionospheric errors, and tropospheric errors that must be provided on a real-time basis. The satellite orbit and satellite clock errors provided by Information-Analytical Centre (IAC) are interpolated at each observation epoch by applying the Lagrange polynomial method and linear interpolation method. We applied Global Ionosphere Maps (GIM) provided by International GNSS Service (IGS) for ionospheric errors, and increased the positioning accuracy by applying the true value calculated with GIPSY for tropospheric errors. As a result of testing the developed GLONASS PPP algorithms for four days, the horizontal error was approximately 1.4 ~ 1.5 m and the vertical error was approximately 2.5 ~ 2.8 m, showing that the accuracy is similar to that of GPS PPP.

Impact of Climate Change on Paddy Water Storage During Storm Periods (기후변화에 따른 홍수기 논의 저류능 변화 분석)

  • Park, Geun-Ae;Park, Jong-Yoon;Shin, Hyung-Jin;Park, Min-Ji;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.27-37
    • /
    • 2010
  • The effect of potential future climate change on the storage rate of paddy field during storm periods (June - September) was assessed using the daily paddy water balance model. The CCCma CGCM2 data by SRES (special report on emissions scenarios) A2 and B2 scenarios of the IPCC (intergovernmental panel on climate change) was used to assess the future potential climate change. The future weather data for the year 2020s, 2050s and 2080s was downscaled by Change Factor method through bias-correction using 30 years weather data. The future (2020s, 2050s and 2080s) rainfall, storage and irrigation of paddy field, runoff in paddy levee and ponding depth were analyzed for the A2 and B2 climate change scenarios based on a base year (2005). The future irrigation change of paddy field was projected to increase by decrease in rainfall. So, runoff change in paddy levee was decrease slightly, future storage change of paddy was projected to increase.

An estimation of surface reflectance for Advanced Himawari Imager (AHI) data using 6SV

  • Seong, Noh-hun;Lee, Chang Suk;Choi, Sungwon;Seo, Minji;Lee, Kyeong-Sang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.67-71
    • /
    • 2016
  • The surface reflectance is essential to retrieval various indicators related land properties such as vegetation index, albedo and etc. In this study, we estimated surface reflectance using Himawari-8 / Advanced Himawari Imager (AHI) channel data. In order to estimate surface reflectance from Top of Atmosphere (TOA) reflectance, the atmospheric correction is necessary because all of the TOA reflectance from optical sensor is affected by gas molecules and aerosol in the atmosphere. We used Second Simulation of a Satellite Signal in the Solar Spectrum Vector (6SV) Radiative Transfer Model (RTM) to correct atmospheric effect, and Look-Up Table (LUT) to shorten the calculation time. We verified through comparison Himawri-8 / AHI surface reflectance and Proba-V S1 products. As a result, bias and Root Mean Square Error (RMSE) are calculated about -0.02 and 0.05.

Practical resolution of angle dependency of multigroup resonance cross sections using parametrized spectral superhomogenization factors

  • Park, Hansol;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1287-1300
    • /
    • 2017
  • Based on the observation that ignoring the angle dependency of multigroup resonance cross sections within a fuel pellet would result in nontrivial underestimation of the spatial self-shielding of flux, a parametrized spectral superhomogenization (SPH) factor library (PSSL) method is developed as a practical means of resolving the problem. Region-wise spectral SPH factors are calculated by the normal and transport corrected SPH iterations after ultrafine group slowing down calculations over various light water reactor pin-cell configurations. The parametrization is done with fuel temperature, U-238 number density, fuel radius, moderator source represented by ${\Sigma}_{mod}V_{mod}$, and the number density ratio of resonance nuclides to that of U-238 in a form of resonance interference correction factors. The parametrization is successful in that the root mean square errors of the interpolated SPH factors over the fuel regions of various pin-cells are within 0.1%. The improvement in reactivity error of the PSSL method is shown to be superior to that by the original SPH method in that the reactivity bias of -200 pcm to -300 pcm vanishes almost completely. It is demonstrated that the environment effect takes only about 4% in the reactivity improvement so that the pin-cell based PSSL method is effective in the assembly problems.

Analysis of Position Error Variance on GNSS Augmentation System due to Non-Common Measurement Error (비공통오차 증가로 인한 위성항법보강시스템 위치 오차 분산 변화 분석)

  • Jun, Hyang-Sig;Ahn, Jong-Sun;Yeom, Chan-Hong;Lee, Young-Jae;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.6
    • /
    • pp.1045-1050
    • /
    • 2008
  • A GNSS augmentation system provides precision information using corrected GNSS pseudorange measurements. Common bias errors are corrected by PRC (Pseudorange Correction) between reference stations and a rover. However non-common errors (ionospheric and tropospheric noise error) are not corrected. Using position error variance this paper analyzes non-common error (noise errors) of ionosphere and troposphere wet vapor.