• Title/Summary/Keyword: Bias Compensation

Search Result 116, Processing Time 0.032 seconds

Accelerometer Compensation Algorithm for Distance Measurement (이동거리측정을 위한 가속도센서의 보정 알고리즘)

  • Lee, Byung-Hee;Park, Myung-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2345-2347
    • /
    • 2001
  • 본 연구에서는 반도체형으로 생산된 가속도센서를 적용하여 거리를 측정하는데 있어 문제점에 대해 언급하고, bias drift error에 따른 적분 누적오차를 줄이기 위한 방법으로 random noise를 감소시키고 위치추정을 위한 데이터 융합에 가장 일반적으로 적용되는 Kalman Filter 알고리즘을 적용하여 가속도 데이터를 상대적 위치 데이터로 변환하여 거리측정에 적용하였다. 또한 가속도센서를 관절형 로봇에 부착시켜 실험하여 이동거리를 산출하는 실험을 수행하였다. 실험 결과 보상 알고리즘을 사용했을 때의 zero drift error과 누적오차가 감소됨을 알 수 있었다.

  • PDF

CMOS Voltage down converter using the self temperature-compensation techniques (자동 온도 보상 기법을 이용한 CMOS 내부 전원 전압 발생기)

  • Son, Jong-Pil;Kim, Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.1-7
    • /
    • 2006
  • An on chip voltage down converter (VDC) using the self temperature-compensation techniques is proposed. At a different gate bias voltage, PMOSFET shows different source to drain current characteristic according to the temperature variation. The proposed VDC can reduce its temperature dependency by the source to drain current ratio of two PMOSFET with different gate bias respectively. Proposed circuit is fabricated in Dongbu-anam $0.18{\mu}m$ CMOS process and experimental results show its temperature dependency of $-0.49mV/^{\circ}C$ and external supply dependency of 6mV/V. Total current consumption is only $1.1{\mu}A@2.5V$.

The Impact of Overvaluation on Analysts' Forecasting Errors

  • CHA, Sang-Kwon;CHOI, Hyunji
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2020
  • Purpose: This study investigated the effects of valuation errors on the capital market through the earnings forecasting errors of financial analysts. As a follow-up to Jensen (2005)'s study, which argued of agency cost of overvaluation, it was intended to analyze the effect of valuation errors on the earnings forecasting behavior of financial analysts. We hypothesized that if the manager tried to explain to the market that their firms are overvalued, the analysts' earnings forecasting errors would decrease. Research design, data and methodology: To this end, the analysis period was set from 2011 to 2018 of KOSPI and KOSDAQ-listed markets. For overvaluation, the study methodology of Rhodes-Kropf, Robinson, and Viswanathan (2005) was measured. The earnings forecasting errors of the financial analyst was measured by the accuracy and bias. Results: Empirical analysis shows that the accuracy and bias of analysts' forecasting errors decrease as overvaluation increase. Second, the negative relationship showed no difference, depending on the size of the auditor. Third, the results have not changed sensitively according to the listed market. Conclusions: Our results indicated that the valuation error lowered the financial analyst earnings forecasting errors. Considering that the greater overvaluation, the higher the compensation and reputation of the manager, it can be interpreted that an active explanation of the market can promote the accuracy of the financial analyst's earnings forecasts. This study has the following contributions when compared to prior research. First, the impact of valuation errors on the capital market was analyzed for the domestic capital market. Second, while there has been no research between valuation error and earnings forecasting by financial analysts, the results of the study suggested that valuation errors reduce financial analyst's earnings forecasting errors. Third, valuation error induced lower the earnings forecasting error of the financial analyst. The greater the valuation error, the greater the management's effort to explain the market more actively. Considering that the greater the error in valuation, the higher the compensation and reputation of the manager, it can be interpreted that an active explanation of the market can promote the accuracy of the financial analyst's earnings forecasts.

A Study on the Electrometric Measurement of the pH of Acid Rain (산성비의 pH 측정에 대한 연구)

  • Lee, Hwa-Shim;Kim, Myung-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.1
    • /
    • pp.10-16
    • /
    • 2000
  • In general, acid rain is unbuffered solution with low ionic strength and high resistance. Therefore during the pH measurement of acid rain, error can be occurred due to the liquid junction potential difference between the sample and the standard solution. Actually the average conductivity of rain in Taeduk Science Town during 1998 is 12.8 ${\mu}S/cm$, while that of pH standmd solutions is about 5,980 ${\mu}S/cm$. There is a large difference in ionic strength. To compensate the bias due to residual liquid junction potentials, a quality control standard(QCS) of dilute sulfuric acid, which has the conductivity and pH values simikw to rain, was prepared. The pH of QCS solution was determined using the hydrogen electrode system without liquid junction, and compensation has been made for the bias terms by performing the pH measurements with glass electrode. On the basis of this compensation method, the pH vaiues of rain in Taeduk Science Town during 1998 were measured.

  • PDF

Atmospheric Correction and Velocity Aberration for Physical Sensor Modeling of High-Resolution Satellite Images (고해상도 위성영상의 센서모델링을 위한 대기 및 속도 보정)

  • Oh, Jae-Hong;Lee, Chang-No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.519-525
    • /
    • 2011
  • High-resolution earth-observing satellites acquire substantial amount of geospatial images. In addition to high image quality, high-resolution satellite images (HRSI) provide unprecedented direct georegistration accuracy, which have been enabled by accurate orbit determination technology. Direct georegistration is carried out by relating the determined position and attitude of camera to the ground target, i.e., projecting an image point to the earth ellipsoid using the collinearity equation. However, the apparent position of ground target is displaced due to the atmosphere and satellite velocity causing significant georegistration bias. In other words, optic ray from the earth surface to satellite cameras at 400~900km altitude refracts due to the thick atmosphere which is called atmospheric refraction. Velocity aberration is caused by high traveling speed of earth-observing satellites, approximately 7.7 km/s, relative to the earth surface. These effects should be compensated for accurate direct georegistration of HRSI. Therefore, this study presents the equation and the compensation procedure of atmospheric refraction and velocity aberration. Then, the effects are simulated at different image acquisition geometry to present how much bias is introduced. Finally, these effects are evaluated for Quickbird and WorldView-1 based on the physical sensor model.

A 12.5-Gb/s Optical Transmitter Using an Auto-power and -modulation Control

  • Oh, Won-Seok;Park, Kang-Yeob;Im, Young-Min;Kim, Hwe-Kyung
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.434-438
    • /
    • 2009
  • In this paper, a 12.5-Gb/s optical transmitter is implemented using 0.13-${\mu}m$ CMOS technology. The optical transmitter that we constructed compensates temperature effects of VCSEL (Vertical cavity surface emitting laser) using auto-power control (APC) and auto-modulation control (AMC). An external monitoring photodiode (MPD) detects optical power and modulation. The proposed APC and AMC demonstrate 5$\sim$20-mA of bias-current control and 5$\sim$20-mA of modulation-current control, respectively. To enhance the bandwidth of the optical transmitter, an active feedback amplifier with negative capacitance compensation is exploited. The whole chip consumes only 140.4-mW of DC power at a single 1.8-V supply under the maximum modulation and bias currents, and occupies the area of 1280-${\mu}m$ by 330-${\mu}m$ excluding bonding pads.

Measurement Delay Error Compensation for GPS/INS Integrated System (GPS/INS 통합시스템의 측정치 시간지연오차 보상)

  • Lyou Joon;Lim You-Chol
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • The INS(Inertial Navigation System) provides high rate position, velocity and attitude data with good short-term stability while the GPS(Global Position System) provides position and velocity data with long-term stability. By integrating the INS with GPS, a navigation system can be achieved to Provide highly accurate navigation Performance. For the best performance, time synchronization of GPS and INS data is very important in GPS/INS integrated system But, it is impossible to synchronize them exactly due to the communication and computation time-delay. In this paper, to reduce the error caused by the measurement time-delay in GPS/INS integrated systems, error compensation methods using separate bias Kalman filter are suggested for both the loosely-coupled and the tightly-coupled GPS/INS integration systems. Linearized error models for the position and velocity matching GPS/INS integrated systems are Int derived by linearizing with respect to its time-delay and augmenting the delay-state into the conventional state equations for each case. And then separate bias Kalman Inter is introduced to estimate the time-delay during only initial navigation stage. The simulation results show that the present method is effective enough resulting in considerably less position error.

Fixed-Width Booth-folding Squarer Design (고정길이 Booth-Folding 제곱기 디자인)

  • Cho Kyung-Ju;Chung Jin-Gyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8C
    • /
    • pp.832-837
    • /
    • 2005
  • This paper presents a design method for fixed-width squarer that receives a W-bit input and produces a W-bit squared product. To efficiently compensate for the quantization error, modified Booth encoder signals (not multiplier coefficients) are used for the generation of error compensation bias. The truncated bits are divided into two groups (major/minor group) depending upon their effects on the quantization error. Then, different error compensation methods are applied to each group. By simulations, it is shown that the performance of the proposed method is close to that of the rounding method and much better than that of the truncation method and conventional method. It is also shown that the proposed method leads to up to $28\%\;and\;27\%$ reduction in area and power consumption compared with the ideal squarers, respectively.

Evolutionary Nonlinear Regression Based Compensation Technique for Short-range Prediction of Wind Speed using Automatic Weather Station (AWS 지점별 기상데이타를 이용한 진화적 회귀분석 기반의 단기 풍속 예보 보정 기법)

  • Hyeon, Byeongyong;Lee, Yonghee;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.107-112
    • /
    • 2015
  • This paper introduces an evolutionary nonlinear regression based compensation technique for the short-range prediction of wind speed using AWS(Automatic Weather Station) data. Development of an efficient MOS(Model Output Statistics) is necessary to correct systematic errors of the model, but a linear regression based MOS is hard to manage an irregular nature of weather prediction. In order to solve the problem, a nonlinear and symbolic regression method using GP(Genetic Programming) is suggested for a development of MOS wind forecast guidance. Also FCM(Fuzzy C-Means) clustering is adopted to mitigate bias of wind speed data. The purpose of this study is to evaluate the accuracy of the estimation by a GP based nonlinear MOS for 3 days prediction of wind speed in South Korean regions. This method is then compared to the UM model and has shown superior results. Data for 2007-2009, 2011 is used for training, and 2012 is used for testing.

A Study on Waveguide Slotted Active Phased Array Radar Target Information Error Compensation Technique (도파관 슬롯 방식의 능동위상배열레이더 표적정보 오차보상기법 연구)

  • Yoo, Dong-gil;Kim, Duck-hwan;Kim, Han-Saeng;Lee, Ki-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 2019
  • The waveguide slotted active phased array radar is characterized in that the beam is tilt in a specific direction when the feeding position of the antenna is not in the center of the antenna. If the beam deflection phenomenon is not properly compensated, error bias is generated in the target information collected by the radar, and the target accuracy is lowered. In this paper, we describe a technique to compensate the error of the target information that is collected in the active phased array radar of the waveguide slot type instead of the center of the antenna.