• 제목/요약/키워드: Bi-prediction

검색결과 140건 처리시간 0.023초

HEVC의 양-예측을 위한 예측 비용 기반의 복잡도 감소 기법 (A Prediction Cost based Complexity Reduction Method for Bi-Prediction in High Efficiency Video Coding (HEVC))

  • 김종호;이하현;전동산;조숙희;최진수
    • 방송공학회논문지
    • /
    • 제17권5호
    • /
    • pp.781-788
    • /
    • 2012
  • HEVC에서는 움직임 예측 시, 복잡도를 줄이기 위해 고속 탐색 기법이 사용된다. 고속 탐색 기법에는 SAD 계산 복잡도를 줄인 부-화소 단위 SAD 계산 기법(sub-sampled SAD)과 양-예측시의 단-예측 반복횟수를 줄인 간소화된 양-예측 기법으로 이루어져 있다. 고속 탐색 기법으로 인해 복잡도는 크게 줄었지만 부호화 이득 역시 감소하였다. 본 논문에서는 감소된 부호화 효율을 보상하기 위해 간소화된 양-예측을 확장하였고 확장된 양-예측으로 증가된 복잡도를 줄이기 위해 예측 비용 기반의 복잡도 감소 기법들을 제안한다. 예측 비용 기반의 복잡도 감소 기법은 양-예측 조기 종료 기법과 양-예측 생략 기법으로 이루어져 있다. HM 6.0 참조 소프트웨어와 비교하여 확장된 양-예측 기법과 예측 비용 기반의 복잡도 감소 기법으로 복잡도의 증가 없이 평균 0.42%의 BD-bitrate을 감소시켰다.

An SAD-Based Selective Bi-prediction Method for Fast Motion Estimation in High Efficiency Video Coding

  • Kim, Jongho;Jun, DongSan;Jeong, Seyoon;Cho, Sukhee;Choi, Jin Soo;Kim, Jinwoong;Ahn, Chieteuk
    • ETRI Journal
    • /
    • 제34권5호
    • /
    • pp.753-758
    • /
    • 2012
  • As the next-generation video coding standard, High Efficiency Video Coding (HEVC) has adopted advanced coding tools despite the increase in computational complexity. In this paper, we propose a selective bi-prediction method to reduce the encoding complexity of HEVC. The proposed method evaluates the statistical property of the sum of absolute differences in the motion estimation process and determines whether bi-prediction is performed. A performance comparison of the complexity reduction is provided to show the effectiveness of the proposed method compared to the HEVC test model version 4.0. On average, 50% of the bi-prediction time can be reduced by the proposed method, while maintaining a negligible bit increment and a minimal loss of image quality.

JM KTA 소프트웨어에서 인트라 및 인터 예측블록이 혼합된 코딩 방법 (Adaptive Combination of Intra/Inter Predictions in JM KTA Software)

  • 김민재;서찬원;장명훈;한종기
    • 방송공학회논문지
    • /
    • 제16권2호
    • /
    • pp.190-206
    • /
    • 2011
  • 본 논문에서는 KTA 소프트웨어의 부호화 효율을 향상시키기 위하여 인트라 예측과 인터 예측을 적응적으로 혼합하여 사용하는 방법을 제안한다. 제안하는 알고리즘은 확장된 매크로 블록 내에서 인터 예측 블록들을 먼저 부호화 및 복호화한 후 그 복원값들을 인트라 예측 부호화 과정에서 이용한다. 기존의 인트라 예측 방법에서는 현재 블록의 우측과 하단에 위치한 화소들을 이용하지 못하였으나, 제안 알고리즘에서는 현재 부호화하려는 블록의 상단과 좌측뿐만 아니라 우측 또는 하단의 복호화가 완료된 화소를 이용하여 양방향 인트라 예측을 수행한다. 이를 위해서 양방향 예측 필터를 디자인하였고, 확장 매크로블록 내의 매크로블록들의 적응적인 코딩 순서 정보를 전달하기 위해서 신택스 구조를 수정하였다. 컴퓨터 실험 결과를 통하여 제안하는 방법이 기존 기술에 비해 압축효율을 향상시키는 것을 알 수 있었다.

K-ToBI 기호에 준한 F0 곡선 생성 알고리듬 (A computational algorithm for F0 contour generation in Korean developed with prosodically labeled databases using K-ToBI system)

  • 이용주;이숙향;김종진;고현주;김영일;김상훈;이정철
    • 대한음성학회지:말소리
    • /
    • 제35_36호
    • /
    • pp.131-143
    • /
    • 1998
  • This study describes an algorithm for the F0 contour generation system for Korean sentences and its evaluation results. 400 K-ToBI labeled utterances were used which were read by one male and one female announcers. F0 contour generation system uses two classification trees for prediction of K-ToBI labels for input text and 11 regression trees for prediction of F0 values for the labels. Evaluation results of the system showed 77.2% prediction accuracy for prediction of IP boundaries and 72.0% prediction accuracy for AP boundaries. Information of voicing and duration of the segments was not changed for F0 contour generation and its evaluation. Evaluation results showed 23.5Hz RMS error and 0.55 correlation coefficient in F0 generation experiment using labelling information from the original speech data.

  • PDF

가변 Break를 이용한 코퍼스 기반 일본어 음성 합성기의 성능 향상 방법 (A Performance Improvement Method using Variable Break in Corpus Based Japanese Text-to-Speech System)

  • 나덕수;민소연;이종석;배명진
    • 한국음향학회지
    • /
    • 제28권2호
    • /
    • pp.155-163
    • /
    • 2009
  • Text-to-speech 시스템에서 입력 텍스트로부터 운율 정보를 생성하기 위해서는 운율구 경계, 음소 지속시간, 기본주파수 포락선 설정의 3가지 기본적인 모듈이 필요하다. Break 인덱스 (BI; Break Index)는 합성기에서 운율구의 경계를 나타내고, 자연스러운 합성음을 생성하기 위해서는 BI를 정확히 예측하여야 한다. 그러나 BI는 문장의 의미나 화자의 읽기 습관(reading style)에 따라 임의적으로 결정되는 경우가 많아 정확한 예측이 매우 어렵다. 특히 일본어 합성기에서는 악센트 구 경계 (APB; Accentual Phrase Boundary)와 major phrase 경계 (MPB; Major Phrase Boundary)의 정확한 예측이 어렵다. 따라서 본 논문에서는 APB와 MPB 예측 오류를 보완할 수 있는 방법을 제안한다. BI를 고정 break (FB; Fixed Break)와 가변 break (VB; Variable Break)로 분류하여 합성단위 선택을 수행한다. 일반적으로 BI는 한번 생성되면 변하지 않는다. 따라서 BI가 잘못 생성된 경우 최적의 합성음을 생성할 수 없게 되는데, VB는 생성된 BI와 그것과 유사한 BI를 함께 이용하여 합성단위 선택을 수행함으로써 합성음의 BI가 생성된 BI와 다를 수 있는 것을 의미한다. APB와 MPB에 해당하는 BI에 대하여 VB인지 FB인지 CART(Classification and Regression Tree)를 이용하여 예측하고, VB인 경우 기본 주파수와 음소 지속시간에 대해 다중 운율 모델을 생성하여 합성단위 선택을 수행하였다. MOS 테스트 결과 원음이 4.99, 제안한 방법을 4.25, 기존의 방법은 4.01로 합성음의 자연성을 향상시킬 수 있었다.

LSTM과 Bi-LSTM을 사용한 비주기성 시계열 데이터 예측 성능 비교 분석 (Comparative Analysis of Prediction Performance of Aperiodic Time Series Data using LSTM and Bi-LSTM)

  • 이주형;홍준기
    • 한국빅데이터학회지
    • /
    • 제7권2호
    • /
    • pp.217-224
    • /
    • 2022
  • 온라인 쇼핑의 대중화로 인해 많은 의류 상품이 온라인 쇼핑을 통해 소비된다. 의류 상품은 다른 상품과 달리 판매량이 일정하지 않고 날씨의 변화에 따라 판매량이 변화하는 특징이 있다. 따라서 의류 상품의 머신 러닝을 적용한 효율적인 재고 관리 시스템에 대한 연구는 매우 중요하다. 본 논문에서는 의류 업체 'A'로부터 실제 의류 상품 판매량 데이터를 수집하고 판매량 데이터와 같은 시계열 데이터의 예측에 많이 활용되는 LSTM(Long Short-Term Memory)과 Bidirectional-LSTM(Bi-LSTM)의 학습에 사용하여 LSTM과 Bi-LSTM의 판매량 예측 효율을 비교 분석하였다. 시뮬레이션 결과를 통해 LSTM 기술 대비 Bi-LSTM은 시뮬레이션 시간은 더 많이 소요되지만 의류 상품 판매량 데이터와 같은 비주기성 시계열 데이터의 예측 정확도가 동일하다는 것을 확인하였다.

Prediction of small-scale leak flow rate in LOCA situations using bidirectional GRU

  • Hye Seon Jo;Sang Hyun Lee;Man Gyun Na
    • Nuclear Engineering and Technology
    • /
    • 제56권9호
    • /
    • pp.3594-3601
    • /
    • 2024
  • It is difficult to detect a small-scale leakage in a nuclear power plant (NPP) quickly and take appropriate action. Delaying these procedures can have adverse effects on NPPs. In this paper, we propose leak flow rate prediction using the bidirectional gated recurrent unit (Bi-GRU) method to detect leakage quickly and accurately in small-scale leakage situations because large-scale leak rates are known to be predicted accurately. The data were acquired by simulating small loss-of-coolant accidents (LOCA) or small-scale leakage situations using the modular accident analysis program (MAAP) code. In addition, to improve prediction performance, data were collected by distinguishing the break sizes in more detail. In addition, the prediction accuracy was improved by performing both LOCA diagnosis and leak flow rate prediction in small LOCA situations. The prediction model developed using the Bi-GRU showed a superior prediction performance compared with other artificial intelligence methods. Accordingly, the accurate and effective prediction model for small-scale leakage situations proposed herein is expected to support operators in decision-making and taking actions.

Feature Selection with Ensemble Learning for Prostate Cancer Prediction from Gene Expression

  • Abass, Yusuf Aleshinloye;Adeshina, Steve A.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12spc호
    • /
    • pp.526-538
    • /
    • 2021
  • Machine and deep learning-based models are emerging techniques that are being used to address prediction problems in biomedical data analysis. DNA sequence prediction is a critical problem that has attracted a great deal of attention in the biomedical domain. Machine and deep learning-based models have been shown to provide more accurate results when compared to conventional regression-based models. The prediction of the gene sequence that leads to cancerous diseases, such as prostate cancer, is crucial. Identifying the most important features in a gene sequence is a challenging task. Extracting the components of the gene sequence that can provide an insight into the types of mutation in the gene is of great importance as it will lead to effective drug design and the promotion of the new concept of personalised medicine. In this work, we extracted the exons in the prostate gene sequences that were used in the experiment. We built a Deep Neural Network (DNN) and Bi-directional Long-Short Term Memory (Bi-LSTM) model using a k-mer encoding for the DNA sequence and one-hot encoding for the class label. The models were evaluated using different classification metrics. Our experimental results show that DNN model prediction offers a training accuracy of 99 percent and validation accuracy of 96 percent. The bi-LSTM model also has a training accuracy of 95 percent and validation accuracy of 91 percent.

HEVC의 GPB 슬라이스에서 양예측 모드의 동일 움직임 정보에 대한 성능 향상 방안 (Coding Efficiency Improvement for Identical Motion Information of Bi-prediction Mode within the GPB Slcice of HEVC)

  • 김상민;김경용;박광훈;김휘용;임성창;이진호
    • 방송공학회논문지
    • /
    • 제16권6호
    • /
    • pp.1069-1072
    • /
    • 2011
  • 본 논문에서는 현재 표준화가 진행 중인 HEVC(High Efficiency Video Coding)에서 양예측(bi-predictive)모드에 존재하는 문제점을 거론하고 문제점에 대한 해결방안을 제시하여 부호화 효율을 증가시키고 계산 복잡도를 감소시키는 방법을 제안한다. 현재 HM 3.0에서는 양예측을 사용하는 블록에서 L0 움직임 정보와 L1 움직임 정보가 동일해지는 경우가 빈번히 발생한다. 본 논문에서는 이러한 현상이 발생하는 경우 L1의 움직임 벡터를 현재 블록의 주변 블록의 (0,0)이 아닌 L0 움직임 벡터로 대체 하고, 여전히 L0 움직임 벡터와 L1 움직임 벡터가 동일할 경우 예측모드를 단예측으로 변경하여 부호화 성능을 향상 시키고 계산 복잡도를 감소시키는 방법을 제안하였다. 실험 결과, LD(Low-Delay) 실험조건의 경우 기존 대비 복호화기의 수행시간을 2% ~ 5% 감소시키고 부호화 성능을 약 0.3% ~ 0.5% 향상 시켰다.

Application of Informer for time-series NO2 prediction

  • Hye Yeon Sin;Minchul Kang;Joonsung Kang
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권7호
    • /
    • pp.11-18
    • /
    • 2023
  • 본 논문에서는 딥러닝 시계열 예측 모형을 평가한다. 최근 연구에 따르면 이 모형은 ARIMA와 같은 기존 예측 모형보다 성능이 우수하다고 결론짓는다. 그 중 히든 레이어에 이전 정보를 저장하는 순환 신경망이 이를 위한 예측 모형 중 하나이다. 네트워크의 그래디언트 소실 문제를 해결하기 위해 LSTM은 데이터 흐름의 반대 방향으로 숨겨진 레이어가 추가되는 BI-LSTM과 함께 순환 신경망 내부의 작은 메모리로 사용된다. 본 논문은 서울의 2018년 1월 1일부터 2022년도 1월 1일까지의 NO2 자료에 대해 Informer의 성능을 LSTM, BI-LSTM, Transformer와 비교하였다. 이에 실제 값과 예측값 사이의 평균 제곱근 오차와 평균 절대 오차를 구하였다. 그 결과 Test 데이터(2021.09.01.~2022.01.01.)에 대해 Informer는 다른 방법에 비해 가장 높은 예측 정확도 (가장 낮은 예측 오차: 평균 제곱근 오차: 0.0167, 평균 절대 오차: 0.0138)를 보여 타 방법에 비해 그 우수성을 입증하였다. Informer는 당초 취지와 부합되게 다른 방법들이 갖고 있는 장기 시계열 예측에 있어서의 문제점을 개선하는 결과를 나타내고 있다.