• Title/Summary/Keyword: Bi-directional Gated Recurrent Unit

Search Result 3, Processing Time 0.016 seconds

Network Intrusion Detection Using Transformer and BiGRU-DNN in Edge Computing

  • Huijuan Sun
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.458-476
    • /
    • 2024
  • To address the issue of class imbalance in network traffic data, which affects the network intrusion detection performance, a combined framework using transformers is proposed. First, Tomek Links, SMOTE, and WGAN are used to preprocess the data to solve the class-imbalance problem. Second, the transformer is used to encode traffic data to extract the correlation between network traffic. Finally, a hybrid deep learning network model combining a bidirectional gated current unit and deep neural network is proposed, which is used to extract long-dependence features. A DNN is used to extract deep level features, and softmax is used to complete classification. Experiments were conducted on the NSLKDD, UNSWNB15, and CICIDS2017 datasets, and the detection accuracy rates of the proposed model were 99.72%, 84.86%, and 99.89% on three datasets, respectively. Compared with other relatively new deep-learning network models, it effectively improved the intrusion detection performance, thereby improving the communication security of network data.

A study on training DenseNet-Recurrent Neural Network for sound event detection (음향 이벤트 검출을 위한 DenseNet-Recurrent Neural Network 학습 방법에 관한 연구)

  • Hyeonjin Cha;Sangwook Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.395-401
    • /
    • 2023
  • Sound Event Detection (SED) aims to identify not only sound category but also time interval for target sounds in an audio waveform. It is a critical technique in field of acoustic surveillance system and monitoring system. Recently, various models have introduced through Detection and Classification of Acoustic Scenes and Events (DCASE) Task 4. This paper explored how to design optimal parameters of DenseNet based model, which has led to outstanding performance in other recognition system. In experiment, DenseRNN as an SED model consists of DensNet-BC and bi-directional Gated Recurrent Units (GRU). This model is trained with Mean teacher model. With an event-based f-score, evaluation is performed depending on parameters, related to model architecture as well as model training, under the assessment protocol of DCASE task4. Experimental result shows that the performance goes up and has been saturated to near the best. Also, DenseRNN would be trained more effectively without dropout technique.

Title Generation Model for which Sequence-to-Sequence RNNs with Attention and Copying Mechanisms are used (주의집중 및 복사 작용을 가진 Sequence-to-Sequence 순환신경망을 이용한 제목 생성 모델)

  • Lee, Hyeon-gu;Kim, Harksoo
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.674-679
    • /
    • 2017
  • In big-data environments wherein large amounts of text documents are produced daily, titles are very important clues that enable a prompt catching of the key ideas in documents; however, titles are absent for numerous document types such as blog articles and social-media messages. In this paper, a title-generation model for which sequence-to-sequence RNNs with attention and copying mechanisms are employed is proposed. For the proposed model, input sentences are encoded based on bi-directional GRU (gated recurrent unit) networks, and the title words are generated through a decoding of the encoded sentences with keywords that are automatically selected from the input sentences. Regarding the experiments with 93631 training-data documents and 500 test-data documents, the attention-mechanism performances are more effective (ROUGE-1: 0.1935, ROUGE-2: 0.0364, ROUGE-L: 0.1555) than those of the copying mechanism; in addition, the qualitative-evaluation radiative performance of the former is higher.