• 제목/요약/키워드: Bi-Sr-Ca-Cu-O ceramics

검색결과 22건 처리시간 0.022초

Bi-Sr-Ca-Cu-O 계에 서 초전도상 형성에 미치는 도우핑 원소의 영향 (Influence of Doping Elements on the. Formation of Superconducting Phase in the Bi-Sr-Ca-Cu-O System)

  • 양승호;정지인;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.217-220
    • /
    • 1999
  • We investigated the effects of doping elements on the Bi-Sr-Ca-Cu-0 ceramics. The doping elements can be classified into groups depending on their supeconducting characteristics in the Bi -Sr-Ca-Cu -O structure. The first group of doping elements(Co, Fe, Ni and Zn) substitute into the copper site and can reduce the critical temperatures of the 2223 and 2212 phases. The second group of doping elements(Y and La) substitute into the Ca site and cause the disappearance of the 2223 phase and increase the critical temperatures in the 2212 phase.

  • PDF

Bi계 초전도체의 Magnetic Suspension (Magnetic Suspension Effect of BiPbSrCaCuO Superconductor)

  • 이상헌
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.101-103
    • /
    • 2001
  • Suspension effect has been studied by using superconductor of BiPbSrCaCuO ceramics containing Ag$_2$O It has been cleared that Ag$_2$O acts as pinning center which plays an important role to the suspension effect. Magnetic repulsive force which affects a superconductor located in magnetic flux from toroidal magnet has been investigated. It has been concluded that the suspension effect arises from the interaction between the pinning effect and the diamagnetic effect.

  • PDF

Bi-Sr-Ca-Cu-O 세라믹의 도우핑 특성 (Deping characteristics of the Bi-Sr-Ca-Cu-O ceramics)

  • 박용필;김영천;황석영
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권1호
    • /
    • pp.1-8
    • /
    • 1996
  • We investigated the effects of doping elements on the Bi-Sr-Ca-Cu-O ceramics. The doping elements can be classified into four groups depending on their supeconducting characteristics in the Bi-Sr-Ca-Cu-O structure. The first group of doping elements(Co, Fe, Ni and Zn) substitute into the copper site and can reduce the critical temperatures of the 2223 and 2212 phases. The second group of doping elements(Y and La) substitute into the Ca site and cause the disappearance of the 2223 phase and increase the critical temperatures in the 2212 phase. The third group of doping elements(P and K) have a tendency to decompose the superconducting phase and reduce the optimal sintering temperature. The fourth group of doping elements(B, Si, Sn and Ba) almost unaffected the superconductivity of the 2223 and 2212 phase.

  • PDF

BiPbSrCaCuO계 초전도체의 전기자기적 특성 (Electromagnetic Characteristics of BiPbSrCaCuO Superconductor)

  • 이상헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.69-70
    • /
    • 2002
  • Suspension effect has been studied by using superconductor of BiPbSrCaCuO ceramics containing $Ag_2O$. It has been cleared that $Ag_2O$ acts as pinning center which plays an important role to the suspension effect. Magnetic repulsive force which affects a superconductor located in magnetic flux from toroidal magnet has been investigated. It has been concluded that the suspension effect arises from the interaction between the pinning effect and the diamagnetic effect.

  • PDF

BiPbSrCaCuO 초전도 벌크의 Magnetic Suspension (Magnetic Suspension Effect of BiPbSrCaCuO Superconducting Bulk)

  • 이상헌
    • 한국전기전자재료학회논문지
    • /
    • 제17권5호
    • /
    • pp.545-551
    • /
    • 2004
  • Magnetic suspension effect has been studied by using superconductor of BiPbSrCaCuO ceramics containing Ag$_2$O. Magnetic flux measurements of a toroidal magnet revealed a concave shaped field distribution with a null field along the axis of the torus at the point where the field reversed. The suspension effect was observed only for the Ag$_2$O doped and field cooled sample which is attributed to the enhanced flux pinning due to the field cooled condition. It has been cleared that Ag$_2$O acts as pinning center which plays an important role to the magnetic suspension effect. Magnetic repulsive force which affects a superconductor located in magnetic flux from toroidal magnet has been investigated. It has been concluded that the magnetic suspension effect arises from the interaction between the pinning effect and the diamagnetic effect.

Bi계 세라믹에서 초전도체 특성에 미치는 도우핑 원소의 영향 (Effect of Doping Elements on Superconducting Characteristics in Bi-system Ceramics)

  • 양승호;박용필;김용주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.198-203
    • /
    • 2000
  • This paper investigated the effects of doping elements on the Bi-Sr-Ca-Cu-O ceramics. The doping elements can be classified into four groups depending on their superconducting characteristics in the Bi-Sr-Ca-Cu-O structure. The first group of doping elements(Co, Fe, Ni and Zn) substitute into the copper site and can reduce the critical temperatures of the 2223 and 2212 phases. The second group of doping elements(Y and La) substitute into the Ca site and cause the disappearance of the 2223 phase and increase the critical temperatures in the 2212 phase. The third group of doping elements(P and K) have a tendency to decompose the superconducting phase and reduce the optimal sintering temperature. The fourth group of doping elements(B, Si, Sn and Ba) almost unaffected the superconductivity of the 2223 and 2212 phase.

  • PDF

BiPbSrCaCuO 초전도체의 Fishing 효과 (Fishing Effect of BiPbSrCaCuO Superconductor)

  • 이상헌
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 방전 플라즈마 유기절연재료 초전도 자성체연구회
    • /
    • pp.177-179
    • /
    • 2004
  • Suspension effect has been studied by using superconductor of BiPbSrCaCuO ceramics containing $Ag_2O$. It has been cleared that $Ag_2O$ acts as pinning center which plays an important role to the suspension effect. Magnetic repulsive force which affects a superconductor located in magnetic flux from toroidal magnet has been investigated. It has been concluded that the suspension effect arises from the interaction between the pinning effect and the diamagnetic effect.

  • PDF

BiPbSrCaCuO 초전도체의 자기부양 메커니즘 (Suspension Mechanism of BiPbSrCaCuO Superconductor)

  • 이상헌;이영희;남성필;이성갑
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.90-92
    • /
    • 2004
  • Suspension effect has been studied by using superconductor of BiPbSrCaCuO ceramics containing $Ag_2O$. It has been cleared that $Ag_2O$ acts as pinning center which plays an important role to the suspension effect. Magnetic repulsive force which affects a superconductor located in magnetic flux from toroidal magnet has been investigated. It has been concluded that the suspension effect arises from the interaction between the pinning effect and the diamagnetic effect.

  • PDF

Bi계 초전도체의 Magnetic Suspension (Magnetic Suspension Effect of BiPbSrCaCuO Superconductor)

  • 이상헌
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.101-103
    • /
    • 2001
  • Suspension effect has been studied by using superconductor of BiPbSrCaCuO ceramics containing $Ag_{2}O$ It has been cleared that $Ag_{2}O$ acts as pinning center which plays an important role to the suspension effect. Magnetic repulsive force which affects a superconductor located in magnetic flux from toroidal magnet has been investigated. It has been concluded that the suspension effect arises from the interaction between the pinning effect and the diamagnetic effect.

  • PDF

BiPbSrCaCuO 초전도 자기검출소자 (Magnetic Field Sensor using BiPbSrCaCuO Superconductor)

  • 이상헌;이성갑;이영희
    • 한국전기전자재료학회논문지
    • /
    • 제16권5호
    • /
    • pp.429-434
    • /
    • 2003
  • The magnetic field sensor was fabricated with superconducting ceramics of BiPbSrCaCuO system. The sensor at liquid nitrogen temperature showed the increase of electrical resistance by applying magnetic field. Actually, the voltage drop across the sensor was changed from zero to a value more than 100 $\mu\textrm{V}$ by the applied magnetic field. The change of electrical resistance depended on magnetic field. The sensitivity of this sensor was 2.9 $\Omega$/T. The sensing limit was about 1.5${\times}$10$\^$-5/ T. The increase of electrical resistance by the magnetic field was ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.