• 제목/요약/키워드: Bi-Directional Power Control

검색결과 118건 처리시간 0.028초

강제 동기식 4생체 4채널 광펠레미트리시스템 구현 (Implementation of four-subject four-channel optical telemetry system with enforced synchronization)

  • 박종대;손진우;서희돈
    • 전자공학회논문지D
    • /
    • 제35D권7호
    • /
    • pp.40-47
    • /
    • 1998
  • This paper presents the physiological signal processing CMOS one chip for transmitting human bodys small electrical signals such as electrocardiogram(EKG) or electromyogram(EMG) and the external system for receiving signals was implemented by the commercial ICs. For simultaneous four-subject four-channel telemetry, a new enfored synchronization techniqeu using infrared bi-directional communication has been proposed. The telemeter IC with the size of 5.1*5.1mm$^{2}$ has the following functions: receiving of command signal, initialization of internal state of all functional blocks, decoding of subject-selection signal, time multiplexing of 4-channel modulated physiological signals, transmitting of telemetry signal to external system and auto power down control. The newly designed synchronized oscillator with low supply voltage dependence in the telemeter IC operates at a supply voltage from 4.6~6.0V and the nonlinearity error of PIM modulator was less than 1.2%F.S(full scale). The power saving block operates at the period of 2.5ms even if the telemetry IC does not receive command signal from external system for a constant time.

  • PDF

The Implementation of The Multi-Subject, Multi-Channel Optical Telemetry System for Physiological Signals

  • 박차훈;박종대;서희돈
    • 센서학회지
    • /
    • 제9권6호
    • /
    • pp.448-454
    • /
    • 2000
  • This paper describes the implementation of a multi-subject, multi-channel optical telemetry system for the short range measurement of electrocardiograms (EKGs) a system which receives command signals and transmits physiological signals to the external system using LED (Light Emitting Diode) and PD (Photodiode). This system decreases the dependency of power supply voltage to the CMOS IC chips and a new enforced synchronization technique using infrared bi-directional communication has also been proposed. The telemetry IC with the size of $5.1{\times}5.1mm^2$ has the following functions: receiving of command signal, initialization of internal state of all functional blocks, decoding of subject selection signal, time division multiplexing of 4-channel modulated physiological signals, transmission of modulated signals to external system, and auto power down control.

  • PDF

ZVT 스위칭 되는 새로운 전류제어형 인버터 (A New Current Controlled Inverter with ZVT Switching)

  • 이성룡;고성훈;김성우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.323-326
    • /
    • 2001
  • In this paper, the proposed current control algorithm is analized and discussed about how to design the auxiliary circuit with auxiliary switch which can apply ZVT operation for the main switch. The simulation results would be shown to verify the proposed current algorithm, because the main power switch is turn on with ZVT and the bi-directional Inverter is operated.

  • PDF

연료전지 발전 시스템을 위한 양방향 DC-DC 컨버터 설계 및 제어 (The Design and Control of Bi-directional DC-DC Converter for a Fuel Cell Power System)

  • 김승민;양승대;최익;최주엽;이상철;이동하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.528-529
    • /
    • 2012
  • 연료전지는 매우 늦은 응답속도를 가지므로 부하 증가시 Li-Ion 배터리나 슈퍼 커패시터 같은 별도의 에너지 저장장치로부터 필요한 전류를 공급받도록 구성되는데 이들 사이에서 전력전달을 위해 DC-DC 컨버터가 필수적으로 요구된다. 본 논문에서는 상태평균화 기법과 PWM 스위치 모델을 사용하여 DC-DC 컨버터를 해석하고 시뮬레이션 하였다. 또한 배터리 등가회로를 구성해서 배터리 등가 임피던스를 고려한 이중루프 제어기를 설계하고 정전류/정전압 충전모드 시뮬레이션을 통해 효과를 확인하였다.

  • PDF

AiTES를 사용한 태양광 발전이 포함된 자가 적응적 스마트 그리드 (Self-Adaptive Smart Grid with Photovoltaics using AiTES)

  • 박성식;박용범
    • Journal of Platform Technology
    • /
    • 제6권3호
    • /
    • pp.38-46
    • /
    • 2018
  • 스마트 그리드는 전력 생산자와 소비자 간의 양방향 통신을 통해 효율적으로 전력을 생산 및 소비하기 위한 지능형 전력망이다. 신재생 에너지가 발전하면서 신재생 에너지가 스마트 그리드에서 차지하는 비율이 점점 높아지고 있다. 신재생 에너지는 발전량이 실시간으로 변하기 때문에 발전량의 예측 및 조절이 가능한 기존의 발전 방식과는 다른 문제점이 있다. 스마트 그리드에 자가 적응 프레임워크를 적용하는 것은 실시간으로 변하는 신재생 에너지의 발전량에 적응함으로써 스마트 그리드의 효율적인 운영을 가능케 할 것이다. 본 논문에서는 태양광 발전 시설이 설치된 스마트 마을을 가정하고 이에 자가 적응 프레임워크인 AiTES 를 적용 하여 자가 적응 프레임워크를 통해 스마트 그리드의 효율적인 운영이 가능함을 보였다.

고체산화물형 연료전지를 위한 10㎾급 독립전력변환장치의 개발 (Development of a 10kw stand-alone power processing unit for SOFC)

  • 이진희;조진상;장민수;최세완;한수빈
    • 전력전자학회논문지
    • /
    • 제8권6호
    • /
    • pp.551-560
    • /
    • 2003
  • 본 논문은 5KW급의 SOFC와 저전압 배터리를 복합전원으로 하는 10KW급 독립형 연료전지발전시스템의 전력변환장치의 개발에 관한 것이다. 이를 위한 전격변환장치는 연료전지로부터의 저전압을 상승시키기 위한 고주파 DC-DC 컨버터 및 이를 안정된 교류전원으로 변환하기 위한 DC-AC 인버터 그리고 저전압 배터리를 충$.$방전하기 위한 양방향 DC-DC 컨버터로 구성된다. 미국 에너지부 및 IEEE가 주최한 "2003 International Future Energy Challenge Competition"에서 제시한 90%이상의 효율과 $40/KW 이하의 양산가등의 사양을 목표로 개발된 본 전력변환장치에 대한 토폴로지, 주요 부품의 설계 및 제어방식에 관하여 기술하고 실험결과를 제시한다.험결과를 제시한다.

Analysis, Design and Implementation of Flexible Interlaced Converter for Lithium Battery Active Balancing in Electric Vehicles

  • Dai, Shuailong;Wang, Jiayu;Li, Teng;Shan, Zhifei;Wei, Yewen
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.858-868
    • /
    • 2019
  • With the widespread use of modern clean energy, lithium-ion batteries have become essential as a more reliable energy storage component in the energy Internet. However, due to the difference in monomers, some of the battery over-charge or over-discharge in battery packs restrict their use. Therefore, a novel multiphase interleaved converter for reducing the inconsistencies of the individual cells in a battery pack is proposed in this paper. Based on the multiphase converter branches connected to each lithium battery, this circuit realizes energy transferred from any cell(s) to any other cell(s) complementarily. This flexible interlaced converter is composed of an improved bi-directional Buck-Boost circuit that is presented with its own available control method. A simulation model based on the PNGV model of fundamental equalization is built with four cells in PSIM. Simulation and experimental results demonstrate that converter and its control achieve simple and fast equalization. Furthermore, a comparison of traditional methods and the HNFABC equalization is provided to show the performance of the converter and the control of lithium-based battery stacks.

IMV를 이용한 굴착기 작업장치 궤적제어 (Trajectory Control of Excavator Actuators Using IMV)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권2호
    • /
    • pp.45-54
    • /
    • 2020
  • The IMV is a combination of four two-way valve systems which replace a conventional four-way spool valve to improve efficiency mostly in excavator hydraulics. As the environmental regulations for construction equipment have tightened, some overseas advanced companies have released commercial excavators in which the MCV is implemented with the IMVs. Development of the IMV type MCV relies on the control algorithm as well as the robust performance of proportional flow control valves. In this study, the IMV controller was designed and verified with experiments for the excavator working unit, which determines the IMV mode of operation and the extent of the valve opening in consideration of the load conditions on hydraulic actuators. First, the open-loop controller was designed with a joystick command vs. a PSV reference current map comprising several control parameters in to compensate for the different flow characteristics and non-linearities of two-way flow control valves. Second, the closed-loop controller was designed with the PI control fed by the actuator displacement and outputs actuator percent effort equivalent to the operator's joystick command. Finally, the performance of the IMV type MCV was verified with the trajectory control of position references derived from the energy consumption test standard. Experimental results showed the control performance of the IMV developed in this study, and suggest that future studies to be conducted to advance technical progress.

IMV 비례 유량제어밸브 정특성 선형해석 (Liner Analysis of IMV Proportional Flow Control Valve Static Characteristics)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권4호
    • /
    • pp.56-64
    • /
    • 2019
  • Recently, as the environmental regulation for earth moving equipment has been tightened, advanced systems using electronic control have been introduced for energy savings. An IMV(Independent Metering Valve), which consists of four 2-way valves, is one of the electro-hydraulic control systems that provides more flexible controllability and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully realize an IMV, a two-stage bi-directional flow control valve which can regulate the large amount of flow in both directions, should be developed in advance. A simple design that allows proportional flow control to apply the pilot pressure from the current-controlled solenoid to the spring loaded flow control spool and thus valve displacement, is proportional to the solenoid current. However, this open-loop type valve is vulnerable to flow force which directly affects the valve displacement. Force feedback servo of which the position loop is closed by the feedback spring which interconnects the solenoid valve and flow control spool, could compensate for the flow force. In this study, linearity for the solenoid current input and robustness against load pressure disturbance is investigated by linear analysis of the static nonlinear equations for the IMV proportional flow control valve with feedback spring. Gains of the linear system confirm the performance improvement with the feedback spring design.

굴삭기 IMV용 비례 유량제어밸브 정특성 해석 (Static Analysis of Dedicated Proportional Flow Control Valve for IMV)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.39-47
    • /
    • 2018
  • Recently, as environmental regulations for earth-moving equipment have been tightening, advanced systems such as electronic control, have been introduced for energy savings. An IMV (Independent Metering Valve) consisting of four 2-way valves, is an electro-hydraulic control systems that provides more flexible controllability, and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully maximize use of an IMV, the bi-directional flow control valve that can regulate a large amount of flow in both directions, should be adopted. The hydraulic circuit of an IMV applied to an excavator from an overseas construction equipment company, reveals the flow control valve with the compound of proportional solenoid valve for first stage, and 2-way spool valve for the second stage. Moreover, the two spools are interconnected by a feedback spring, presumed to compensate for flow force acting on the second stage spool. This paper addresses the static analysis of flow control valve in an IMV to investigate the improvement of robustness, against flow force by the feedback spring. From the steady-state analysis of flow control valve model, it can be concluded that the feedback spring facilitates maintaining linearity of spool displacement for control input, and relatively constant flow for load disturbance.