• 제목/요약/키워드: Bi-Directional Power Control

검색결과 118건 처리시간 0.026초

Annual Energy Production Maximization for Tidal Power Plants with Evolutionary Algorithms

  • Kontoleontos, Evgenia;Weissenberger, Simon
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권3호
    • /
    • pp.264-273
    • /
    • 2017
  • In order to be able to predict the maximum Annual Energy Production (AEP) for tidal power plants, an AEP optimization tool based on Evolutionary Algorithms was developed by ANDRITZ HYDRO. This tool can simulate all operating modes of the units (bi-directional turbine, pump and sluicing mode) and provide the optimal plant operation that maximizes the AEP to the control system. For the Swansea Bay Tidal Power Plant, the AEP optimization evaluated all different hydraulic and operating concepts and defined the optimal concept that led to a significant AEP increase. A comparison between the optimal plant operation provided by the AEP optimization and the full load operating strategy is presented in the paper, highlighting the advantage of the method in providing the maximum AEP.

전압형 PWM 컨버터의 무효성분 해석 (Analysis of Reactive Elements on The Voltage Source PWM Converter)

  • 김제홍;정환명;최재호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.243-245
    • /
    • 1994
  • A PWM forced-commutated converter with DC voltage source is studied in this paper. This PWM-VSC using spacs vector modulation permits to control bi-directional power exchange between the AC mains and the DC source. The principle of the active and reactive power control is presented. In transient operation, the analysis of reactive component current is performed. Finally, the simulation results are also presented and discussed.

  • PDF

CC-CV충전제어가 가능한 IPMSM 토크제어기법 (IPMSM Torque Control Method available CC-CV Charge Control)

  • 김준찬;원일권;추경민;홍성우;김우재;김도윤;김영렬;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.407-408
    • /
    • 2017
  • In regenerative mode of an IPMSM control system without a bi-directional DC-DC converter, the 3-phase PWM inverter charges the battery. At this time, the regenerative torque reference for braking must output the proper torque reference to charge the battery. This paper proposed a regeneration control method that controls the voltage and current of the battery through CC-CV control at the regenerative braking torque corresponding to the driver's brake control.

  • PDF

DC 마이크로그리드에서 에너지 저장장치를 위한 양방향 DC-DC컨버터의 무순단 절체 제어기법 (A Seamless Transfer Method of Bidirectional DC-DC Converter for ESS in DC Micro-grids)

  • 권민호;박준성;최세완
    • 전력전자학회논문지
    • /
    • 제19권2호
    • /
    • pp.194-200
    • /
    • 2014
  • In DC micro-grid system energy storage systems (ESS) are responsible for storing energy and balancing power. Also, control target of the bidirectional DC-DC converter(BDC) for ESS should be changed depending on the operating mode. During the grid connected mode, the BDC controls the battery current or voltage. When a grid fault occurs, the BDC should change the control target to regulate the DC-bus. The BDC with conventional control method may experience large transient state during the mode change. This paper proposes a control method of BDC for ESS. The proposed control method is able to provide autonomous and seamless mode transfer by a variable current limiter. To validate the proposed concept, simulation results using PSIM and experimental results from a 2kW prototype are provided.

DC Bus Conditioner을 위한 카변히스테리시스제어 (A Variable Hysteresis Control for a DC Bus Conditioner)

  • 라재두;한문섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.472-475
    • /
    • 2008
  • A DC distributed power system(DPS) has many loads with varied functions. In particular, there may be large pulsed toads with short duty ratio, which can affect the normal operation of other loads. In this paper, a bi-directional converts with inductive storage is used as a DC bus conditioner to damp voltage transients on the bus. In addition, the constant frequency hysteresis control technique for a DC bus conditioner is presented. A simple and fast prediction of the hysteresis band-width is implemented by the phase-lock loop control, keeping constant switching frequency. This technique offers the excellent dynamic response in load or parameter variation. The control performance is illustrated by simulated results with the SABER package. The proposed hysteresis control results in the shortest and the smallest excursions.

  • PDF

디지털 PWM 입력 D급 음향 증폭기를 위한 새로운 제어기법 (A novel controller for switching audio power amplifier with digital input)

  • 박종후;김창균;조보형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.976-979
    • /
    • 2002
  • A new controller for switching audio power amplifier with digital PWM input is proposed- Bi-directional Saw-tooth Error Correction (BSEC). This control method for high quality switching amplifier is based on a pulsed edge correction approach using PWM audio signal input as a reference of power switching digital to analog converter. The proposed controller has excellent features such as wide error correction range and no limitation on the modulation index. The controller is implemented in the half-bridge class D amplifier and the performance is verified through hardware experiments. It delivers 100W into 4${\Omega}$ load with less than 0.2% of total harmonic distortion (THD) all over operating range and an maximum efficiency of 82%.

  • PDF

SSR을 제어하기 위한 새로운 캐패시터 스위칭방법에 관한 연구 (New capacitor switching schemes to control subsynchronous resonance)

  • 이훈구;이승환;강승욱;한경희;정연택
    • 대한전기학회논문지
    • /
    • 제45권1호
    • /
    • pp.67-73
    • /
    • 1996
  • Subsynchronous resonance(SSR) causes a torsional shaft torque on the generator. Damages resulting from the uncontrolled SSR have resulted in the breakdown in the shaft and costs for replacement power. This paper is to determine the feasibility of controlling SSR by the fast modulation of series compensation capacitors. The presence of subsynchronous currents in the system was detected by a subsynchronous relay which was modeled by the transient analysis of control systems(TACS) in electromagnetic transients program (EMTP). The capacitor segments were switched by bi-directional thyristor switches. These were modeled into EMTP. The strategy to switch the capacitors were modeled as a closed loop system. The paper proves that effective control of SSR can be obtained only by the detuning of the system and the removal or blocking of subsynchronous energy from the system. (author). refs., figs., tabs.

  • PDF

태양광 시뮬레이터와 PCS를 이용한 배터리 방전시스템 구성 (Battery Discharge System Configuration using Photovoltaic Simulator and PCS)

  • 정다움;박성민;박성미;박성준;문승필
    • 한국산업융합학회 논문집
    • /
    • 제23권3호
    • /
    • pp.491-498
    • /
    • 2020
  • Recently, In the production line of batteries, charge and discharge tests are essential to verify battery characteristics. In this case, the battery charging uses a unidirectional AC/DC converter capable of output voltage and current control, and the discharge uses a resistive load. Since this method consumes energy during discharge, it must be replaced with a bi-directional AC/DC converter system capable of charging and discharging. Although it is difficult to replace the connected inverter part of the bi-directional AC/DC converter system due to the high cost, the spread of the solar-connected inverter rapidly increases as the current solar supply business is activated, and thereby the solar-connected type Inverter prices are plunging. If it can be used as a power converter for battery discharge without program modification of the solar-powered inverter, it will have competition. In this paper, propose a new battery discharge system using a combination of a photovoltaic DC/DC simulator and photovoltaic PCS using a battery to be used as a power converter for battery discharge without program modification of a low-cost photovoltaic inverter. In addition, propose an optimal solar characteristic curve for the stable operation of PCS. The validity of the proposed system was verified using a 500[W] class solar DC/DC simulator and a solar PCS prototype.

Static buckling analysis of bi-directional functionally graded sandwich (BFGSW) beams with two different boundary conditions

  • Berkia, Abdelhak;Benguediab, Soumia;Menasria, Abderrahmane;Bouhadra, Abdelhakim;Bourada, Fouad;Mamen, Belgacem;Tounsi, Abdelouahed;Benrahou, Kouider Halim;Benguediab, Mohamed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • 제44권4호
    • /
    • pp.503-517
    • /
    • 2022
  • This paper presents the mechanical buckling of bi-directional functionally graded sandwich beams (BFGSW) with various boundary conditions employing a quasi-3D beam theory, including an integral term in the displacement field, which reduces the number of unknowns and governing equations. The beams are composed of three layers. The core is made from two constituents and varies across the thickness; however, the covering layers of the beams are made of bidirectional functionally graded material (BFGSW) and vary smoothly along the beam length and thickness directions. The power gradation model is considered to estimate the variation of material properties. The used formulation reflects the transverse shear effect and uses only three variables without including the correction factor used in the first shear deformation theory (FSDT) proposed by Timoshenko. The principle of virtual forces is used to obtain stability equations. Moreover, the impacts of the control of the power-law index, layer thickness ratio, length-to-depth ratio, and boundary conditions on buckling response are demonstrated. Our contribution in the present work is applying an analytical solution to investigate the stability behavior of bidirectional FG sandwich beams under various boundary conditions.

Development of DC Controller for Battery Control for Elevator Car

  • Lee, Sang-Hyun;Kim, Sangbum
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.103-111
    • /
    • 2021
  • Among transport vehicles, Special Vehicles (SVs) are seriously exposed to energy and environmental problems. In particular, elevator cars used when moving objects in high-rise buildings increase the engine's rotational speed (radian per second: RPM). At this time, when the vehicle accelerates rapidly while idling, energy consumption increases explosively along with the engine speed, and a lot of soot is generated. The purpose of this paper is to develop a bi-directional DC-DC converter for control of vehicle power and secondary battery used in an elevated ladder vehicle (EC) used in the moving industry. As a result of this paper, the performance test of the converter was conducted. The charging/discharging state of the converter was simulated using DC power supply and DC electronic load, and a performance experiment was conducted to measure the input/output power of the converter through a power meter. Through this experimental result, it was confirmed that the efficiency was more than 92% in Buck mode and Boost mode at maximum 1.2kW output.