• Title/Summary/Keyword: Bi-Directional Power Control

Search Result 118, Processing Time 0.03 seconds

Design and Fabrication of 1.2GHz range RF Transmitter and Receiver for Bi-directional Capsule Endoscopes (양방향 캡슐형 내시경용 1.2GHz 대역 RF 송수신기 설계 및 제작)

  • 장경만;문연관;류원열;윤영섭;조진호;최현철
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.81-85
    • /
    • 2003
  • The Bi-directional Wireless Capsule endoscope con sists of CMOS Image sensor, FPGA, LED, Battery, DC to DC Converter, Transmitter, Receiver and Antennas. The RF transmitter at 1.2GHz range is designed and fabricated with 10 mm(diameter)x1.6 mm(thickness) dimension considering the maximum permission exposure(MPE), system size, power consumption, linearity and modulation method. The fabricated RF receiver at 400MHz range can demodulate the external signals so as to control the behavior of CMOS image sensor. four LEDs and Transmitter.

  • PDF

Current-fed Bi-directional Converter using a Resonance with Wide Output Voltage Range (넓은 출력 전압 범위를 갖는 공진을 이용한 전류원 양방향 컨버터)

  • Ha, Eun-Jung;Noh, Yong-Su;Oh, Min-Seuk;Lee, Taeck-Kie;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.299-300
    • /
    • 2015
  • This paper proposes current-fed bi-directional DC-DC converter using a resonance (CF-BCR) with wide output voltage range. The steady state analysis and operation principles of CF-BCR are introduced. To increase the output voltage range with satisfying soft switching condition, switching frequency, duty and number of times of the resonance are controlled. The proposed converter and its control method are verified by theoretical analysis and PSIM simulation.

  • PDF

A Design and Control of Bi-directional Non-isolated DC-DC Converter with Coupled Inductors for Rapid Electric Vehicle Charging System

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungil;Kim, Daegyun
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.429-430
    • /
    • 2011
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology with coupled inductors. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. The pre-charging mode employs the staircase shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

  • PDF

Input AC Voltage Sensorless Control Scheme for a Three-Phase PWM Rectifier in Wind Power Generation System

  • Wu, YanJun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.472-476
    • /
    • 2012
  • In this paper, a sensorless control scheme for a three-phase bi-directional voltage-type PWM rectifier in wind power generation system that operates without the input AC voltage sensors (generator side) is described. The basic principles and classification of the PWM rectifier are analyzed, and then the three-phase mathematical model of the input AC voltage sensorless PWM rectifier control system is established. The proposed scheme has been developed in order to lower the cost of the three-phase PWM rectifier but still achieve excellent output voltage regulation, limited current harmonic content, and unity input power factor.

A Novel Control Strategy for a Three-Phase Rectifier with High Power Factor and Stable Output Voltage

  • Lee, Hong-Hee;Phan, Van-Tung;Sergey, Brovanov;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.203-212
    • /
    • 2007
  • In this paper, a proposed approach to improve the power factor of three-phase rectifiers and to stabilize the output voltage against load change is presented. The elements of the given control strategy are small size, low cost, high performance, and simplicity. The proposed control strategy of switches is based on a prototype of three bi-directional switched consisting of four diodes and one IGBT. A control technique and operational procedure are also developed, both theoretically and experimentally. The experimental results clearly verify the theoretical analysis from the prototype connected to grid unity.

An Implementation of a Current Controlled Bi-directional Inverter with ZVT Switching (ZVT 스위칭 되는 전류제어형 양방향 인버터의 구현)

  • 李 星 龍;高 晟 勳;金 成 佑
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.129-136
    • /
    • 2002
  • A single-phase inverter using a diode bridge-type resonant circuit to implement ZVT(Zero Voltage Transition) switching is presented. It Is shown that the ZACE(Zero Average Current Error) algorithm based Polarized ramptime current control can provide a suitable interface between DC link of diode bridge-type resonant circuit and the inverter. The current control algorithm is analyzed about how to design the circuit with auxiliary switch which can ZVT operation for the main power switch. The simulation and experimental results would be shown to verify the proposed current algorithm, because the main Power switch is turn on with ZVT and the hi-directional inverter is operated.

CPLD-based Controller for Bi-directional Communication in a Capsule Endoscope (캡슐형 무선 내시경의 양방향 통신을 위한 CPLD 기반의 제어기 설계 및 구현)

  • Lee Jyung Hyun;Moon Yeon Kwan;Park Hee Joon;Won Chul Ho;Lee Seung Ha;Choi Hyun Chul;Cho Jin Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.447-453
    • /
    • 2004
  • In the case of a capsule that can acquire and transmit images from the intestines, the size of the module and the battery capacity in the capsule are subject to restriction. The capsule must be swallowable and the battery must maintain the stable power during the capsule travels in the gastrointestinal tract. Therefore, it is important to control the endoscope using bi-directional wireless communication. In this study, encoder and decoder CPLD modules for bi-directional capsule endoscopes were designed and implemented. The designed controller for capsule endoscope can transmit the images of GI-track from inside to outside of the body and the capsules can be controlled by external controller simultaneously. The designed and implemented controller was verified by an in-vivo animal experiments. From these experiments, it was verified that the CPLD module for bi-directional capsule endoscope satisfied the design specifications.

Simulation Analysis for the Development of 3 Stage IMV (양방향 3단 IMV 개발을 위한 시뮬레이션 해석)

  • Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.55-62
    • /
    • 2020
  • There are two types of IMV for MCV, the spool type and the poppet type. The spool type is used in the existing excavator MCV and easily meets large-capacity flow conditions, but has a flow force problem which affects the spool control. The poppet type stably blocks the flow and has excellent rapid response. However, the larger the capacity, the larger the diameter of the poppet needed, requiring a strong spring to withstand the oil pressure. In this study, a bi-directional three-stage IMV for MCV that can be used in medium and large hydraulic excavators was proposed. This is a poppet type, enabling bi-directional flow control and resolves the problem of proportional solenoid suction force limitation. To investigate the validity of the proposed valve, the system was mathematically modeled and the static and dynamic characteristics were investigated through the simulation using commercial software. It has been concluded that the reverse flow is possible in a regeneration circuit and that the proposed IMV can be used to perform various excavation modes.

80kW SiC Bi-directional Converter using DC Droop Control in DC Nano-grid (DC Nano-grid에서 DC Droop Control을 적용한 80kW급 SiC 양방향 컨버터)

  • Park, Sungyoul;Kim, Yeonwoo;Kwon, Minho;Choi, Sewan;Jung, Sehyoung;Kim, Minkook;Oh, Seongjin
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.17-18
    • /
    • 2016
  • 본 논문에서는 DC droop control을 적용한 80kW급 SiC 양방향 컨버터를 제안한다. 시스템은 20kW 모듈 4개를 이용하는 모듈형 컨버터이며, 토폴로지는 넓은 입력전압 범위를 만족하기 위하여 Cascade 부스트-벅 컨버터 구조이다. 모듈 컨버터의 제어는 모듈 간 통신이 필요 없는 DC droop control에 부하분담과 전압 regulation 성능을 모두 향상시키기 위하여 Secondary control을 적용했다. 제안하는 시스템의 타당성을 검증하기 위하여 20kW급 시작품 2대 실험을 통해 병렬 운전을 검증하였으며, 14kW에서 최고 효율 98.9%를 달성하였다.

  • PDF

Design and Implementation of the RF Systems for Bi-directional Wireless Capsule Endoscopes

  • Moon, Yeon-Kwan;Lee, Jyung-Hyun;Park, Hee-Joon;Lee, Ju-Gab;Ryu, Jae-Jong;Lee, Wu-Seong;Woo, Sang-Hyo;Won, Chul-Ho;Cho, Jin-Ho;Choi, Hyun-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1669-1680
    • /
    • 2006
  • This paper explains that the RF systems for hi-directional wireless capsule endoscopes were designed and implemented. The designed RF systems for a capsule endoscope can transmit the images of intestines from the inside to the outside of a body and the behavior of the capsules can be controlled by an external controller simultaneously. The hi-directional wireless capsule endoscope consists of a CMOS image sensor, FPGA, LED, battery, DC to DC Converter, transmitter, receiver, and antennas. The transmitter and receiver which were used in the hi-directional capsule endoscope, were designed and fabricated with $10mm(diameter){\times}3.2mm(thickness)$ dimensions taking into the MPE, power consumption, system size, signal to noise ratio and modulation method. The RF systems designed and implemented for the hi-directional wireless capsule endoscopes system were verified by in-vivo experiments. As a result, the RF systems for the hi-directional wireless capsule endoscopes satisfied the design specifications.

  • PDF