• Title/Summary/Keyword: Beta-hydroxybutyrate

Search Result 87, Processing Time 0.022 seconds

Nicorandil alleviated cardiac hypoxia/reoxygenation-induced cytotoxicity via upregulating ketone body metabolism and ACAT1 activity

  • Bai, Yan Ping;Han, Lei Sen
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.37-45
    • /
    • 2019
  • To study the effect of nicorandil pretreatment on ketone body metabolism and Acetyl-CoA acetyltransferase (ACAT1) activity in hypoxia/reoxygenation (H/R)-induced cardiomyocytes. In our study, we applied H9c2 cardiomyocytes cell line to evaluate the cardioprotective effects of nicorandil. We detected mitochondrial viability, cellular apoptosis, reactive oxygen species (ROS) production and calcium overloading in H9c2 cells that exposed to H/R-induced cytotoxicity. Then we evaluated whether nicorandil possibly regulated ketone body, mainly ${\beta}$-hydroxybutyrate (BHB) and acetoacetate (ACAC), metabolism by regulating ACAT1 and Succinyl-CoA:3-ketoacid coenzyme A transferase 1 (OXCT1) protein and gene expressions. Nicorandil protected H9c2 cardiomyocytes against H/R-induced cytotoxicity dose-dependently by mitochondria-mediated anti-apoptosis pathway. Nicorandil significantly decreased cellular apoptotic rate and enhanced the ratio of Bcl-2/Bax expressions. Further, nicorandil decreased the production of ROS and alleviated calcium overloading in H/R-induced H9c2 cells. In crucial, nicorandil upregulated ACAT1 and OXCT1 protein expressions and either of their gene expressions, contributing to increased production of cellular BHB and ACAC. Nicorandil alleviated cardiomyocytes H/R-induced cytotoxicity through upregulating ACAT1/OXCT1 activity and ketone body metabolism, which might be a potential mechanism for emerging study of nicorandil and other $K_{ATP}$ channel openers.

Isolation and Characterization of a Pink-Pigmented Facultative Methylotrophic Bacterium (분홍색 통성 메탄올 자화세균의 분리 및 특성)

  • 양석훈;김영민
    • Korean Journal of Microbiology
    • /
    • v.27 no.1
    • /
    • pp.63-69
    • /
    • 1989
  • A pink-pigmented facultative methylotrophic bacterium, Methylobacterium sp. strain SY1, was isolated from soil through methanol-enrichment culture technique. The isolate was gram-negative, slightly curved rod, and motile by a single polarly inserted flagellum. The colony was smooth, bright pink, and slimy. The guanine plus cytosine content of the KNA was 66%. The cell was obigately aerobic and exhibited both catalase and oxidase activities. Carotenoid pigment and poly-$\beta$-hydroxybutyrate were present. It was found to have three kinds of plasmid with molecular weights 45,000, 38,500 and 23,000. Growth with methanol(0.5%) was fast ($t_{d}$=6.5h) and was optimal at $30^{\circ}C$ and at pH 7.0. The isolate could grow on several sugars, organic acids, amino acids, amines, and alcohols in addition to the methanol. Methanol was found to be assimilated through the serine pathway.

  • PDF

Function of Global Regulator CodY in Bacillus thuringiensis BMB171 by Comparative Proteomic Analysis

  • Qi, Mingxia;Mei, Fei;Wang, Hui;Sun, Ming;Wang, Gejiao;Yu, Ziniu;Je, Yeonho;Li, Mingshun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.152-161
    • /
    • 2015
  • CodY is a highly conserved protein in low G+C gram-positive bacteria that regulates genes involved in sporulation and stationary-phase adaptation. Bacillus thuringiensis is a grampositive bacterium that forms spores and parasporal crystals during the stationary phase. To our knowledge, the regulatory mechanism of CodY in B. thuringiensis is unknown. To study the function of CodY protein in B. thuringiensis, BMB171codY- was constructed in a BMB171 strain. A shuttle vector containing the ORF of cry1Ac10 was transformed into BMB171 and BMB171codY-, named BMB171cry1Ac and BMB171codY-cry1Ac, respectively. Some morphological and physiological changes of codY mutant BMB171codY-cry1Ac were observed. A comparative proteomic analysis was conducted for both BMB171codY-cry1Ac and BMB171cry1Ac through two-dimensional gel electrophoresis and MALDI-TOF-MS/MS analysis. The results showed that the proteins regulated by CodY are involved in microbial metabolism, including branched-chain amino acid metabolism, carbohydrate metabolism, fatty acid metabolism, and energy metabolism. Furthermore, we found CodY to be involved in sporulation, biosynthesis of poly-β-hydroxybutyrate, growth, genetic competence, and translation. According to the analysis of differentially expressed proteins, and physiological characterization of the codY mutant, we performed bacterial one-hybrid and electrophoretic mobility shift assay experiments and confirmed the direct regulation of genes by CodY, specifically those involved in metabolism of branched-chain amino acids, ribosomal recycling factor FRR, and the late competence protein ComER. Our data establish the foundation for in-depth study of the regulation of CodY in B. thuringiensis, and also offer a potential biocatalyst for functions of CodY in other bacteria.

Effects of peripartal glucose precursor supplementation on lactation performance and metabolic health of primiparous and multiparous dairy cows

  • Muhammad Uzair Akhtar;Hifzulrahman;Talat Naseer Pasha;Muhammad Avais;Nauman Khan;Ghazanfar Ali Chishti;Mubashar Ali;Muhammad Imran;Muhammad Naeem Tahir;Muhammad Naveed-ul-Haque
    • Animal Bioscience
    • /
    • v.36 no.6
    • /
    • pp.869-878
    • /
    • 2023
  • Objective: Hyperketonemia remains a major metabolic issue of serious milk production and a major health concern in early lactation cows. Oral supplementation of glucose precursors (GP) can be used to prevent hyperketonemia in dairy cows. The objective of this study was to compare the beneficial effects of orally supplementing a mixture of GP on metabolic health indicators and milk production status of primiparous (PP) and multiparous (MP) dairy cows. Methods: Twenty-eight Holstein cows were blocked by expected date of parturition, previous lactation yield, and parity. The cows were randomly allocated to one of the four treatment groups (n = 7 cows/group) based on their parity and GP supplementation: i) PP cows fed basal diet only (PP-CON), ii) PP cows with oral supplementation of GP (PP-GP), iii) MP cows fed basal diet only (MP-CON), and iv) MP cows with oral supplementation of GP (MP-GP). Glucose precursor (glycoline liquid) was orally drenched (300 mL/d) in GP cows from 7 days prepartum through 7 days postpartum. Other than GP supplementation, all cows were fed similar pre- and postpartum basal diets. Results: In both pre- and postpartum periods, serum glucose concentration was increased, whereas β-hydroxybutyrate and free fatty acids were decreased in GP cows compared with the CON cows. Milk yield and milk components were statistically not different between GP and CON cows over the first 9 week of lactation. The yield of actual milk, energy-corrected milk, 63-days cumulative milk, colostrum yield, and calf birth weight remained higher in MP cows compared with PP cows. Conclusion: Oral drenching of GP around calving can be recommended to successfully improve the metabolic health and reduce the negative effects of hyperketonemia not only in MP but also in PP dairy cows.

Reference intervals for blood metabolic profiles of Holstein cows in Korea (국내 젖소의 혈액 대사인자 프로파일 분석)

  • Jung, Suk-Han;Jung, Young-Hun;Choe, Changyong;Do, Yoon Jung;Cho, Ara;Oh, Sang-Ik;Kim, Eunju;Ha, Seungmin;Jeong, Ha Yeon;Yoo, Jae Gyu;Kim, Suhee
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.2
    • /
    • pp.121-126
    • /
    • 2019
  • Metabolic profile test is used to evaluate nutritional imbalance and metabolic disease in dairy cows. The reference intervals of metabolic parameters may change according to nation, region, decades, and maintenance system. Despite the need to be periodically updated for the reference intervals of metabolic parameters, it has rarely been investigated in Korea. Therefore, this aim of study was to provide the reference intervals of metabolic parameters using dairy cows surveyed in Korea during recent years. A metabolic profile test was conducted for 2,976 clinically healthy dairy cows in Korea. Blood samples were collected for the analysis of serum metabolites. This study provided reference intervals of thirteen metabolic parameters (${\beta}$-hydroxybutyrate [${\beta}-HB$], non-esterified fatty acids [NEFA], glucose, total cholesterol [T-COL], total protein, albumin, globulin, blood urea nitrogen [BUN], aspartate aminotransferase [AST], gamma-glutamyl transferase [GGT], calcium, phosphorus, and magnesium). BUN and AST values of the current study were higher than those of previous studies. In the present study, the other metabolic parameters showed low or similar value compared to previous results. Moreover, ${\beta}-HB$, NEFA, T-COL, ALB, BUN, AST, and GGT values were affected by lactation period. This study provided information on the reference intervals of metabolites in healthy dairy cows in Korea. The reference intervals from the present study would be useful in managing and diagnosing disease of dairy cows. However, careful attention should be given in interpreting disease condition for metabolites affected by lactation.

Effects of Using Monensin and Different Levels of Crude Protein on Milk Production, Blood Metabolites and Digestion of Dairy Cows

  • Ghorbani, B.;Ghoorchi, T.;Amanlou, H.;Zerehdaran, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.1
    • /
    • pp.65-72
    • /
    • 2011
  • Twenty-four Holstein dairy cows were used to evaluate the single and combined effects of different levels of crude protein (CP) and monensin treatment during early lactation on blood metabolites, milk yield and digestion of dairy cows. The experiment was designed as a completely randomized block with a $3{\times}2$ factorial arrangement of treatments. The factors were three concentrations of CP supplement (19.5, 21.4, and 23.4% of dry matter) and two levels of monensin (0 and 350 mg per cow per day). The experiment consisted of three phases and each phase was 3 wk in length. Monensin did not affect milk yield, lactose, solids-non-fat (SNF), blood glucose, triglyceride and DMI, but increased blood cholesterol, blood urea nitrogen (BUN), insulin and reduced blood ${\beta}$-hydroxybutyrate (BHBA), milk fat and protein percentage. Monensin premix significantly decreased rumen ammonia, but rumen pH and microbial protein synthesis were not affected by monensin treatment. Increasing dietary CP improved milk and protein production, but did not alter the other components of milk. Digestibility of NDF, ADF, CP were improved by increasing dietary CP. Increasing dietary CP from 19.5 to 21.4% had no significant effect on ruminal ammonia, but increasing CP to 23.4% significantly increased ruminal ammonia. There was a linear relationship between level of crude protein in the diet and volume of urine excretion. Microbial protein synthesis was affected by increasing CP level; in this way maximum protein synthesis was achieved at 23.4% CP.

The Effects of Thyme and Cinnamon Essential Oils on Performance, Rumen Fermentation and Blood Metabolites in Holstein Calves Consuming High Concentrate Diet

  • Vakili, A.R.;Khorrami, Behzad;Mesgaran, M. Danesh;Parand, E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.7
    • /
    • pp.935-944
    • /
    • 2013
  • Essential oils have been shown to favorably effect in vitro ruminal fermentation, but there are few in vivo studies that have examined animal responses. The objective of this study was to evaluate the effects of thyme (THY) and cinnamon (CIN) essential oils on feed intake, growth performance, ruminal fermentation and blood metabolites in feedlot calves fed high-concentrate diets. Twelve growing Holstein calves ($213{\pm}17kg$ initial BW) were used in a completely randomized design and received their respective dietary treatments for 45 d. Treatments were: 1-control (no additive), 2-THY (5 g/d/calf) and 3-CIN (5 g/d/calf). Calves were fed ad libitum diets consisting of 15% forage and 85% concentrate, and adapted to the finishing diet by gradually increasing the concentrate ratio with feeding a series of transition diets 5 wk before the experiment started. Supplementation of THY or CIN did not affect DMI and ADG, and feed efficiency was similar between treatment groups. There were no effects of additives on ruminal pH and rumen concentrations of ammonia nitrogen and total VFA; whereas molar proportion of acetate and ratio of acetate to propionate decreased, and the molar proportion of propionate increased with THY and CIN supplementation. Rumen molar concentration of butyrate was significantly increased by adding CIN compared to control; but no change was observed with THY compared with control group. No effects of THY, or CIN were observed on valerate, isobutyrate or isovalerate proportions. Plasma concentrations of glucose, cholesterol, triglyceride, urea-N, ${\beta}$-hydroxybutyrate, alanine aminotransferase and aspartate aminotransferase were not changed by feeding THY or CIN. Results from this study suggest that supplementing a feedlot finishing diet with THY or CIN essential oil might be useful as ruminal fermentation modifiers in beef production systems, but has minor impacts on blood metabolites.

Effects of Monensin on Metabolism and Production in Dairy Saanen Goats in Periparturient Period

  • Sadjadian, Rasool;Seifi, Hesam A.;Mohri, Mehrdad;Naserian, Abbas Ali;Farzaneh, Nima
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.1
    • /
    • pp.82-89
    • /
    • 2013
  • This trial evaluated the effects of dietary supplementation with monensin sodium on dry matter intake, metabolic parameters and milk yield and milk composition of dairy Saanen goats in the periparturient period. Twelve Saanen pregnant dairy goats were assigned to a treatment and a control group. Saanen goats were fed monensin as its 10% sodium salt in the amount of 33 mg/kg of total dry matter intake during 30 d before parturition till d 42 in milk. Blood samples were collected from each goat at d 30, 15 and 7 before expected kidding time and also in d 1, 7, 13, 19, 21, 28, 35 and 42 postpartum. The serum concentrations of ${\beta}$-Hydroxybutyrate (BHBA), non-esterifed fatty acid (NEFA), calcium, magnesium, inorganic phosphorus, cholesterol, triglyceride, urea, total protein, albumin and glucose and aspartate aminotransferase (AST) activity were determined. The BHBA concentration significantly decreased in goats, which received monensin in comparison to controls in the postpartum period (p = 0.049). The concentration of sodium (Na) was significantly influenced by monensin treatment in the postpartum period (p = 0.048). In addition, the difference in dry matter intake was highly significant between the two groups during the pre-partum period. Controls had more dry matter intake (DMI) than treatment goats (p = 0.0001). Mean 3.5% fat corrected milk production was not influenced by monensin treatment. However, milk fat percentage was significantly decreased in monensin treated goats (p = 0.0017).

EPS Production, PHB Accumulation and Abiotic Stress Endurance of Plant Growth Promoting Methylobacterium Strains Grown in a High Carbon Concentration

  • Woo, Sung-Man;Subramanian, Parthiban;Ramasamy, Krishnamoorthy;Joe, M. Melvin;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.572-581
    • /
    • 2012
  • In this study, we compared growth pattern, floc yield, Exo-polysaccharides (EPS) production, Poly-${\beta}$-hydroxybutyrate (PHB) accumulation, resistance to osmotic and acid stress in Methylobacterium strains CBMB20, CBMB27, CBMB35, and CBMB110. Modified high C:N ratio medium denoted as HCN-AMS medium was used with a C:N ratio of 30:1. The HCN-AMS medium favored increased growth in all the studied strains. All Methylobacterium strains tested positive for EPS production and showed positive fluorescence with calcoflour stain. Elevated levels of EPS production from 4.2 to 75.0% was observed in HCN-AMS medium. Accumulation of PHB in HCN-AMS medium increased by 3.8, 36.7, and 12.0% in strains CBMB27, CBMB35, and CBMB110 respectively. Among the abiotic stresses, osmotic stress-induced growth inhibition of Methylobacterium strains was found to be lowered when grown in HCN-AMS medium. Likewise, growth inhibition due to acid stress at pH 5.0 was lower for strains grown in HCN-AMS medium compared to growth in AMS medium. Enhanced survivability under stress conditions may be attributed to the high EPS and PHB production at increased carbon concentration in the growth medium.

Effects of Prepartum Dietary Carbohydrate Source on Metabolism and Performance of Primiparous Holstein Cows during the Periparturient Period

  • Mirzaei Alamouti, H.R.;Amanlou, H.;Rezayazdi, K.;Towhidi, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1513-1520
    • /
    • 2009
  • Forty-six Holstein heifers were used in a completely randomized design and assigned to 1 of 2 treatments to evaluate the effects of 2 diets varying in ruminal fermentable carbohydrate sources, namely ground corn (GC) and rolled wheat (RW), on metabolism and performance of primiparous cows in the periparturient period. The heifers were fed diets as a total mixed ration (TMR) with similar energy and crude protein content including i) 18.57% GC, or ii) 18.57% RW from -24.13${\pm}$7.73 d relative to expected calving until calving. After calving, all animals received the same lactation diet until 28 d. Animals were group fed from the beginning of the study to -7 d relative to expected calving, fed individually from d -7 to 7 days in milk (DIM), and again group fed to 28 DIM. The pre-partum diets affected (p<0.05) dry matter intake (DMI), energy intake, energy balance (EB) and urinary pH during the last week pre-partum. There was no effect of pre-partum carbohydrate source on overall plasma concentration of glucose, nonesterified fatty acid (NEFA), $\beta$-hydroxybutyrate (BHBA), albumin, triglyceride (TG), cholesterol, aspartate aminotransferase (AST), insulin, and cortisol during the periparturient period. Cows fed the RW diet during the pre-partum period had greater calcium for the first week (p<0.05) and during 28 d (p = 0.08) of lactation compared with heifers fed the GC diet. Primiparous cows fed the RW diet produced greater milk protein content and yield (p<0.05). Primiparous cows fed the RW diet had lower milk urea nitrogen (MUN) and somatic cell count (SCC) than cows fed the GC diet (p<0.05). The results of this study show that feeding pre-partum diets with a rapidly fermentable source of starch but low energy content can improve animal metabolism and performance and smooth the transition of primiparous Holstein cows from gestation to lactation.