• Title/Summary/Keyword: Beta-glucuronidase

검색결과 254건 처리시간 0.097초

Perfusion Cultivation of Transgenic Nicotiana tabacum Suspensions in Bioreactor for Recombinant Protein Production

  • Lee Sang-Yoon;Kim Dong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.673-677
    • /
    • 2006
  • A perfusion culture of transgenic Nicotiana tabacum cell suspensions, transformed to express recombinant glucuronidase (GUS), was successfully performed in a 5-1 stirred tank bioreactor. With 0.1 $day^{-1}$ of perfusion rate, the maximum dry cell weight (DCW) reached to 29.5 g/l in 16 days, which was 2.1-fold higher than the obtained in batch culture (14.3 g/l). In terms of the production of GUS, the volumetric activity could be increased up to 12.8 U/ml by using perfusion, compared with 4.9 U/ml in batch culture. The specific GUS activities in both perfusion and batch cultures were maintained at similar levels, 200-400 U/g DCW. Consequently, a perfusion culture could be a good strategy for the enhanced production of recombinant proteins in a plant cell culture system.

Protective Effects of Bifidobacterium spp. on Experimental Colon Carcinogenesis with 1,2-Dimethylhydrazine

  • HAN, MYUNG JOO;HAE-YOUNG PARK;DONG-HYUN KIM
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권3호
    • /
    • pp.368-370
    • /
    • 1999
  • The protective role of Bifidobacterium spp. (B. breve K-110, B. breve K-111, and B. infantis K-525) isolated from the fecal samples of healthy Koreans was investigated on 1,2-dimethylhydrazine (DMH)-induced aberrant crypt foci(ACF) formation in mouse colon. In mice fed normal diet with DMH treatment, an average of 68.5 ACF/colon was formed, whereas in mice administered with B. breve K-110, B. breve K-111, and B. infantis K-525, the numbers of DMH-induced ACF decreased to 7.2, 10.9, and 6.6 ACF/ colon, respectively. The mean number of crypts/focus was not significantly altered. Fecal harmful enzymes, such as β-glucuronidase, tryptophanase, and urease, were effectively inhibited during the administration of these bifidobacteria to mice. These results suggest that bifidobacteria could prevent colon cancer.

  • PDF

Studies on the Pharmacological Actions of Cactus:Identification of Its anti-Inflammatory Effect

  • Park, Eun-Hee;Kahng, Ja-Hoon;Paek, Eun-Ah
    • Archives of Pharmacal Research
    • /
    • 제21권1호
    • /
    • pp.30-34
    • /
    • 1998
  • The ethanol extracts of Opuntia ficus-indica fructus (EEOF) and Opuntia ficus-indica stem (EEOS) were prepared and used to evaluate the pharmacological effects of cactus. Both the extracts inhibited the writhing syndrome induced by acetic acid, indicating that they contains analgesic effect. The oral administrations of EEOF and EEOS suppressed carrageenan-induced rat paw edema and also showed potent inhibition in the leukocyte migration of CMC-pouch model in rats. Moreover, the extracts suppressed the release of $\beta$-glucuronidase, a lysosomal enzyme in rat neutrophils. It was also noted that the extracts showed the protective effect on gastric mucosal layers. From the results it is suggested that the cactus extracts contain anti-inflammatory action having protective effect against gastric lesions.

  • PDF

SCO6992, a Protein with β-Glucuronidase Activity, Complements a Mutation at the absR Locus and Promotes Antibiotic Biosynthesis in Streptomyces coelicolor

  • Jin, Xue-Mei;Choi, Mu-Yong;Tsevelkhoroloo, Maral;Park, Uhnmee;Suh, Joo-Won;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권11호
    • /
    • pp.1591-1600
    • /
    • 2021
  • Streptomyces coelicolor is a filamentous soil bacterium producing several kinds of antibiotics. S. coelicolor abs8752 is an abs (antibiotic synthesis deficient)-type mutation at the absR locus; it is characterized by an incapacity to produce any of the four antibiotics synthesized by its parental strain J1501. A chromosomal DNA fragment from S. coelicolor J1501, capable of complementing the abs- phenotype of the abs8752 mutant, was cloned and analyzed. DNA sequencing revealed that two complete ORFs (SCO6992 and SCO6993) were present in opposite directions in the clone. Introduction of SCO6992 in the mutant strain resulted in a remarkable increase in the production of two pigmented antibiotics, actinorhodin and undecylprodigiosin, in S. coelicolor J1501 and abs8752. However, introduction of SCO6993 did not show any significant difference compared to the control, suggesting that SCO6992 is primarily involved in stimulating the biosynthesis of antibiotics in S. coelicolor. In silico analysis of SCO6992 (359 aa, 39.5 kDa) revealed that sequences homologous to SCO6992 were all annotated as hypothetical proteins. Although a metalloprotease domain with a conserved metal-binding motif was found in SCO6992, the recombinant rSCO6992 did not show any protease activity. Instead, it showed very strong β-glucuronidase activity in an API ZYM assay and toward two artificial substrates, p-nitrophenyl-β-D-glucuronide and AS-BI-β-D-glucuronide. The binding between rSCO6992 and Zn2+ was confirmed by circular dichroism spectroscopy. We report for the first time that SCO6992 is a novel protein with β-glucuronidase activity, that has a distinct primary structure and physiological role from those of previously reported β-glucuronidases.

Enhancement of ${\beta}$-Glucan Content in the Cultivation of Cauliflower Mushroom (Sparassis latifolia) by Elicitation

  • Park, Hyun;Ka, Kang-Hyeon;Ryu, Sung-Ryul
    • Mycobiology
    • /
    • 제42권1호
    • /
    • pp.41-45
    • /
    • 2014
  • The effectiveness of three kinds of enzymes (chitinase, ${\beta}$-glucuronidase, and lysing enzyme complex), employed as elicitors to enhance the ${\beta}$-glucan content in the sawdust-based cultivation of cauliflower mushroom (Sparassis latifolia), was examined. The elicitors were applied to the cauliflower mushroom after primordium formation, by spraying the enzyme solutions at three different levels on the sawdust-based medium. Mycelial growth was fully accomplished by the treatments, but the metabolic process during the growth of fruiting bodies was affected. The application of a lysing enzyme resulted in an increase in the ${\beta}$-glucan concentration by up to 31% compared to that of the control. However, the treatment resulted in a decrease in mushroom yield, which necessitated the need to evaluate its economic efficiency. Although we still need to develop a more efficient way for using elicitors to enhance functional metabolites in mushroom cultivation, the results indicate that the elicitation technique can be applied in the cultivation of medicinal/edible mushrooms.

Characterization of a potential probiotic strain Lactobacillus plantarum MY4

  • 정황영;정민용;김기태;김천제;백현동
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.882-885
    • /
    • 2001
  • The cells of Lactobacillus plantarum MY4 isolated from the human feces were treated for 24 h in artificial bile after incubation for 2 h in artificial gastric juice and final number of the strain was reached to around $3.1{\times}10^8$ CFU/ml. In test of API ZYM kit, ${\beta}$-glucuronidase or ${\beta}$-glucosidase were not produced by L. plantarum MY4. However, ${\beta}$-galactosidase were weakly produced by it, which they would be alleviated the lactose intolerance. L. plantarum MY4 were resistant to antibiotics such as nisin, tetracycline, streptomycin, rifamycin, doxycycline, roxithromycin, chloramphenicol, nystatin, erythromycin, ciprofloxacin and gentamycin. L. plantarum MY4 was affected by alcohol concentration up to 8%, but more than 16%, their growth was not affected significantly. L. plantarum MY4 was shown to inhibit the growth of Listeria monocytogenes ATCC 19111 completely within 24 h of incubation, which indicates its bactericidal nature. Thus, L plantarum MY4 show promise as a probiotic strain because of its characteristics.

  • PDF

Effect of media compositions on carbohydrolase complex production in Lentinus edodes

  • 박점석;최민구;지영민;최정우;홍억기
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.209-212
    • /
    • 2003
  • 본 연구는 고수율의 아라비녹실란을 얻기위해 필수요소인 Lentinus edodes의 액체배양을 통해 생산되어지는 탄수화물 복합효소의 생산수율을 증대시키는데 그 목적이 있다. 그러기 위해 탄수화물 복합효소의 생산에 배지성분이 미치는 영향을 검토 하였다.

  • PDF

가열온도(加熱溫度)에 따른 애엽(艾葉)의 성분변화(成分變化) 및 생리활성(生理活性)에 관(關)한 연구(硏究) (The Study For Changes In Components And Activities Of Artemisiae Herba. At Various Processing Temperature)

  • 박영재;박영배;김용석;고형균;김창환;강성길
    • Journal of Acupuncture Research
    • /
    • 제15권2호
    • /
    • pp.1-15
    • /
    • 1998
  • Purpose : The study for changes in components and acitvities of Artemisiae Herba at various processing temperature is generally regarded as a foundation in setting the optimum heat-processing temperature and for getting the maximum activities for medical usage of this herb. Methods: Therefore some experiments were performed either in vitro or in vivo and various changes were observed - the changes in the weitht of Artemisiae Herba, the changes in the relative amount of three kinds of extracts from Artemisiae Herba ( diluted ethanol extract, water extract, ether extract ), the TLC pattern of essential oil at various processing temperature, the existance of inhibitory effects both on ${\beta}$-Glucuronidase activities, and on heat-induced hemolysis, the effects on increased vascular permeability. The valid results derived from the experiments are as follows. Results: 1. The weight of Artemisiae Herba prominently decreased at 240^{\circ}C$. 2. The contents of diluted ether extract were maximum in the unprocessing condition. Those of water extract were maximum at 180^{\circ}C$ and at 210^{\circ}C$. and the changes of diluted ethanol extract at 150^{\circ}C$. 3. The TLC pattern of essential oil in Artemisiae Herba at various processing temperature showed that a component began to increase at Rf 0.56 and another component began to decrease at Rf 0.86. 4. The contents of Eupatilin in Artemisiae Herba at various processing temperature continued to decreased in proportion to the temperature rise, the extent of which was prominent at 210^{\circ}C$, and was unnoticeable at 270^{\circ}C$. 5. Inhibitory effects on ${\beta}$-Glucuronidase activities, trypsin activities and heat-induced hemolysis increased in proportion to the density of Artemisiae Herba. Inhibitory effects on ${\beta}$-Glucuronidase activities and trypsin activities were relatively high at 180^{\circ}C$ while on the writhing syndrome and inhibitory effects on increased vascular permeability induced by acetic acid were maximum at 240^{\circ}C$. those on heat-induced hemolysis were relatively high at 240^{\circ}C$. 6. In vivo, both analgesic effects Conclusions: To maximize of the effectiveness of Artemmisiae Herba, the ideal heating temperature is in the range of 180^{\circ}C{\sim}240^{\circ}C$.

  • PDF

건율제조탕이 CCl4로 유발(誘發)된 간손상(肝損傷) 백서(白鼠)에 미치는 영향(影響) (The Effects of Gunyuljejo-tang on the CCl4-induced Liver Damage in Rat)

  • 김정렬;김혁;양상묵;김달래;전종원
    • 사상체질의학회지
    • /
    • 제16권3호
    • /
    • pp.96-107
    • /
    • 2004
  • 1. Objectives This study was carried out to investigate the effects of Gunyuljejo-tang on the $CCl_4$-induced Liver Damage in Rats. 2. Methods Sprague-Dawley rats were devided into 5 experimental groups : Normal, $NS+CCl_4$(Solid extract of $CCl_4$ injection group after Normal Saline feed), $GYJJT+CCl_4$(Solid extract of $CCl_4$ injection group after Gunyuljejo-tang feed), $CCl_4+NS$(Normal Saline feed group after $CCl_4$ injection), $CCl_4+GYJJT$(Solid extract of Gunyuljejo-tang feed group after $CCl_4$ injection). Biochemical assays for serum enzyme activities such as AST, ALT, ALP, BUN, Creatinine, Uric Acid, Total Protein, Albumin, Total Cholesterol, Triglyceride, Glucose, and mRNA Revelation of Cytochrome p450 and activities such as LPO, GSH, GST, Glutathione Reductase, Glutathione Peroxidase, SOD, Catalase, Hydroxyproline, and ${\beta}$-Glucuronidase were performed. 3. Results (1) $GYJJT+CCl_4$ showed lower revelation of Cytochrome p450. (2) $GYJJT+CCl_4$ showed higher GSH activity than $NS+CCl_4$, $CCl_4+GYJJT$ showed higher GSH activity than $CCl_4+NS$ injection significantly. (3) $GYJJT+CCl_4$ showed higher GST activity than $NS+CCl_4$. $CCl_4+GYJJT$ showed higher GST activity than $CCl_4+NS$ significantly. (4) $GYJJT+CCl_4$ showed higher Glutathione Peroxidase activity than $NS+CCl_4$, $CCl_4+GYJJT$ showed higher Glutathione Peroxidase activity than $CCl_4+NS$ significantly. (5) $CCl_4+GYJJT$ showed higher SOD activity than $CCl_4+NS$ significantly. (6) $CCl_4+GYJJT$ showed higher Catalase activity than $CCl_4+NS$ significantly. (7) $GYJJT+CCl_4$ showed lower Hydroxyproline than $NS+CCl_4$ significantly, $CCl_4+GYJJT$ showed higher Hydroxyproline than $CCl_4+NS$ significantly. (8) $GYJJT+CCl_4$ showed higher ${\beta}$-Glucuronidase activity than $NS+CCl_4$, $CCl_4+GYJJT$ showed higher ${\beta}$-Glucuronidase activity than $CCl_4+NS$ significantly. 4. Conclusions Gunyuljejo-tang has the recovering effects on the $CCl_4$-induced Liver Damage significantly.

  • PDF

Biotransformation of Glycyrrhizin by Human Intestinal Bacteria and its Relation to Biological Activities

  • Kim, Dong-Hyun;Hong, Sung-Woon;Kim, Byung-Taek;Bae, Eun-Ah;Park, Hae-Young;Han, Myung-Joo
    • Archives of Pharmacal Research
    • /
    • 제23권2호
    • /
    • pp.172-173
    • /
    • 2000
  • The relationship between the metabolites of glycyrrhizin (18$\beta$-glycyrrhetinic acid-3-O--D-glu-curonopyranosyl-($1{\rightarrow}2$)-$\beta$-D-glucuronide, CL) and their biological activities was investigated. By human intestinal microflora, CL was metabolized to 18$\beta$-glycyrrhetinic acid (GA) as a main product and to 18$\beta$-glycyrrhetinic acid-3-O-$\beta$-D-glucuronide (GAMG) as a minor product. The former reaction was catalyzed by Eubacterium L-8 and the latter was by Streptococcus LJ-22. Among GL and its metabolites, GA and GAMG had more potent in vitro anti-platelet aggregation activity than GL. GA also showed the most potent cytotoxicity against tumor cell lines and the potent inhibitory activity on rotavirus infection as well as growth of Helicobacter pylori. GAMG, the minor metabolite of GL, was the sweetest.

  • PDF