• Title/Summary/Keyword: Beta-adrenergic blocker

Search Result 32, Processing Time 0.017 seconds

Update on infantile hemangioma

  • Jung, Hye Lim
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.11
    • /
    • pp.559-572
    • /
    • 2021
  • The International Society for the Study of Vascular Anomalies classifies vascular anomalies into vascular tumors and vascular malformations. Vascular tumors are neoplasms of endothelial cells, among which infantile hemangiomas (IHs) are the most common, occurring in 5%-10% of infants. Glucose transporter-1 protein expression in IHs differs from that of other vascular tumors or vascular malformations. IHs are not present at birth but are usually diagnosed at 1 week to 1 month of age, rapidly proliferate between 1 and 3 months of age, mostly complete proliferation by 5 months of age, and then slowly involute to the adipose or fibrous tissue. Approximately 10% of IH cases require early treatment. The 2019 American Academy of Pediatrics clinical practice guideline for the management of IHs recommends that primary care clinicians frequently monitor infants with IHs, educate the parents about the clinical course, and refer infants with high-risk IH to IH specialists ideally at 1 month of age. High-risk IHs include those with life-threatening complications, functional impairment, ulceration, associated structural anomalies, or disfigurement. In Korea, IHs are usually treated by pediatric hematology-oncologists with the cooperation of pediatric cardiologists, radiologists, dermatologists, and plastic surgeons. Oral propranolol, a nonselective beta-adrenergic antagonist, is the first-line treatment for IHs at a dosage of 2-3 mg/kg/day divided into 2 daily doses maintained for at least 6 months and often continuing until 12 months of age. Topical timolol maleate solution, a topical nonselective beta-blocker, may be used for small superficial type IHs at a dosage of 1-2 drops of 0.5% gel-forming ophthalmic solution applied twice daily. Pulse-dye laser therapy or surgery is useful for the treatment of residual skin changes after IH involution.

The effect of octanol on the intracellular Ca2+ increase in submandibular acinar cells evoked by β-adrenergic activation (악하선 선포세포에서 β-아드레날린계 활성화 후 세포내 Ca2+ 농도 증가에 미치는 옥탄올의 효과)

  • Choi, Jeong-Iee
    • Journal of dental hygiene science
    • /
    • v.2 no.1
    • /
    • pp.47-51
    • /
    • 2002
  • The concentration of intracellular $Ca^{2+}$ was measured by spectrofluorometer after rat submandibular acinar cells were loaded with fura-2/AM(fura-2). After isoproterenol and octanol were administered while letting submandibular gland acinar cell placed in a perfusion chamber flow through a standard solution, the changes of $Ca^{2+}$ concentration were measured. When they were administered separately, there showed little changes of intracellular $Ca^{2+}$ concentration. When they were administered at the same time, however the concentration of intracellar $Ca^{2+}$ was shown to increase. When forskolin, an adenylate cyclase activater, was administerd together with octanol the response looked similar to the response of isoproterenol. In case of the extracellular $Ca^{2+}$ was removed by omitting $Ca^{2+}$ in standard solution and treating EGTA, isoproterenol and forskolin does not affect to the concentration of intracellular $Ca^{2+}$. Therefore, it was certified that the increase of intracellular $Ca^{2+}$ was caused from outside the cell. In order to know that the $Ca^{2+}$ influx is related with capacitative entry pathway, godolinium, blocker of that pathway was treated. With the result of that experiment there was no complete control of the increase in the concentration of intracellular $Ca^{2+}$. However, speed and amount of $Ca^{2+}$ increase was comparatively diminished.

  • PDF