• Title/Summary/Keyword: Beta radiation

Search Result 431, Processing Time 0.025 seconds

Assessment of Effective Doses in the Radiation Field of Contaminated Ground Surface by Monte Carlo Simulation (몬테칼로 시뮬레이션에 의한 지표면 오염 방사선장에서의 유효선량 평가)

  • Chang, Jai-Kwon;Lee, Jai-Ki;Chang, Si-Young
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.205-213
    • /
    • 1999
  • Effective dose conversion coefficients from unit activity radionuclides contaminated on the ground surface were calculated by using MCNP4A rode and male/female anthropomorphic phantoms. The simulation calculations were made for 19 energy points in the range of 40 keV to 10 MeV. The effective doses E resulting from unit source intensity for different energy were compared to the effective dose equivalent $H_E$ of previous studies. Our E values are lower by 30% at low energy than the $H_E$ values given in the Federal Guidance Report of USEPA. The effective dose response functions derived by polynomial fitting of the energy-effective dose relationship are as follows: $f({\varepsilon})[fSv\;m^2]=\;0.0634\;+\;0.727{\varepsilon}-0.0520{\varepsilon}^2+0.00247{\varepsilon}^3,\;where\;{\varepsilon}$ is the gamma energy in MeV. Using the response function and the radionuclide decay data given in ICRP 38, the effective dose conversion coefficients for unit activity contamination on the ground surface were calculated with addition of the skin dose contribution of beta particles determined by use of the DOSEFACTOR code. The conversion coefficients for 90 important radionuclides were evaluated and tabulated. Comparison with the existing data showed that a significant underestimates could be resulted when the old conversion coefficients were used, especially for the nuclides emitting low energy photons or high energy beta particles.

  • PDF

An Improved Movable 3 photomultiplier (3PM)-γ Coincidence Counter Using Logical Sum of Double Coincidences in β-Channel for Activity Standardization

  • Hwang, Han Yull;Lee, Jong Man
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.76-80
    • /
    • 2020
  • Background: To improve the measurement accuracy of liquid-scintillation counting for activity standardization, it is necessary to significantly reduce the background caused by thermal noise or after-pulses. We have therefore improved a movable 3 photomultiplier (3PM)-γ coincidence-counting method using the logical sum of three double coincidences for β events. Materials and Methods: We designed a new data-acquisition system in which β events are obtained by counting the logical sum of three double coincidences. The change in β-detection efficiency can be derived by moving three photomultiplier tubes sequentially from the liquid-scintillation vial. The validity of the method was investigated by activity measurement of 134Cs calibrated at the Korea Research Institute of Standards and Science (KRISS) with 4π(PC)β-γ(NaI(Tl)) coincidence counting using a proportional counter (PC) for the β detector. Results and Discussion: Measurements were taken over 14 counting intervals for each liquidscintillation sample by displacing three photomultiplier tubes up to 45 mm from the sample. The dead time in each β- and γ-counting channel was adjusted to be a non-extending type of 20 ㎲. The background ranged about 1.2-3.3 s-1, such that the contributions of thermal noise or after-pulses were negligible. As the β-detection unit was moved away from the sample, the β-detection efficiencies varied between 0.54 and 0.81. The result obtained by the method at the reference date was 396.3 ± 1.7 kBq/g. This is consistent with the KRISS-certified value of 396.0 ± 2.0 kBq/g within the uncertainty range. Conclusion: The movable 3PM-γ method developed in the present work not only succeeded in reducing background counts to negligible levels but enabled β-detection efficiency to be varied by a geometrical method to apply the efficiency extrapolation method. Compared with our earlier work shown in the study of Hwang et al. [2], the measurement accuracy has much improved. Consequently, the method developed in this study is an improved method suitable for activity standardization of β-γ emitters.

Feasibility and response of helical tomotherapy in patients with metastatic colorectal cancer

  • Bae, Sun Hyun;Moon, Seong Kwon;Kim, Yong Ho;Cho, Kwang Hwan;Shin, Eung Jin;Lee, Moon Sung;Ryu, Chang Beom;Ko, Bong Min;Yun, Jina
    • Radiation Oncology Journal
    • /
    • v.33 no.4
    • /
    • pp.320-327
    • /
    • 2015
  • Purpose: To investigate the treatment outcome and the toxicity of helical tomotherapy (HT) in patients with metastatic colorectal cancer (mCRC). Materials and Methods: We retrospectively reviewed 18 patients with 31 lesions from mCRC treated with HT between 2009 and 2013. The liver (9 lesions) and lymph nodes (9 lesions) were the most frequent sites. The planning target volume (PTV) ranged from 12 to 1,110 mL (median, 114 mL). The total doses ranged from 30 to 70 Gy in 10-30 fractions. When the ${\alpha}/{\beta}$ value for the tumor was assumed to be 10 Gy for the biologically equivalent dose (BED), the total doses ranged from 39 to $119Gy_{10}$ (median, $55Gy_{10}$). Nineteen lesions were treated with concurrent chemotherapy (CCRT). Results: With a median follow-up time of 16 months, the median overall survival for 18 patients was 33 months. Eight lesions (26%) achieved complete response. The 1- and 3-year local progression free survival (LPFS) rates for 31 lesions were 45% and 34%, respectively. On univariate analysis, significant parameters influencing LPFS rates were chemotherapy response before HT, aim of HT, CCRT, PTV, BED, and adjuvant chemotherapy. On multivariate analysis, $PTV{\leq}113mL$ and $BED>48Gy_{10}$ were associated with a statistically significant improvement in LFPS. During HT, four patients experienced grade 3 hematologic toxicities, each of whom had also received CCRT. Conclusion: The current study demonstrates the efficacy and tolerability of HT for mCRC. To define optimal RT dose according to tumor size of mCRC, further study should be needed.

Measurement of Environmental Radiation according to Altitude above Sea Level in National Park (국립공원의 해발고도에 따른 환경방사선 측정)

  • Ji, Tae-Jeong;Lee, In-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.694-701
    • /
    • 2012
  • This study set put to measure the environmental radiation for mountainous regions of National Parks where Integrated Environmental Radiation Monitoring Network is not installed. For the measurement method, the space dose was classified at 1 meter high from the surface and the index dose at the surface. The measured radiation energy measured gamma, alpha and beta rays. For selection of national parks, we selected 10 national parks which are within the same distribution in the southern part and central part of the nation. For measurement equipment, INTERCEPTOR$^{TM}$(Thermo, USA, 2006) was used for gamma rays. As for the results of the measurements, for the space gamma dose, a high level was measured at a sea level of 500 meter in national parks with an altitude of less than 1,000 meter. It was found that the value was more than $0.23{\mu}Svh^{-1}$ especially in Bukhan Mountain, Gyeryong Mountain and Wolchul Mountain. In national parks with an altitude of more than 1,000 meter, $1.77{\mu}Svh^{-1}$ was measured at 1,500 meter at Seorak Mountain. Therefore, this is 10 times greater than the background standard dose. The national parks were there were no significant changes in dose were Naejang Mountain, Sobaek and Jiri Mountains. For the measurement of the index dose, a high dose level was measured at middle altitudes of 500 meter and 1,000 meter. For measurement according to the composition types of crust, high doses were recorded at national parks composed of rocks and a lower environmental radiation level was measured at Hanra Mountain where volcanic activities have occurred.

Survival outcomes after adjuvant radiotherapy for aggressive fibromatosis depend on time frame and nuclear β-catenin

  • Kim, Jae Sik;Kim, Hak Jae;Lee, Me-Yeon;Moon, Kyung Chul;Song, Seung Geun;Kim, Han-Soo;Han, Ilkyu;Kim, Il Han
    • Radiation Oncology Journal
    • /
    • v.37 no.1
    • /
    • pp.37-42
    • /
    • 2019
  • Purpose: To identify prognostic factors influencing progression-free survival (PFS) of aggressive fibromatosis (AF) after postoperative radiotherapy (PORT) and assess correlations between immunohistochemistry (IHC) features of β-catenin/smooth muscle actin (SMA) and PFS. Materials and Methods: Records of 37 patients with AF treated by PORT from 1984 to 2015 were retrospectively reviewed. Fifteen patients underwent wide excision for AF and 22 patients received debulking operation. The median total dose of PORT was 59.4 Gy. IHC staining results of β-catenin and SMA were available for 11 and 12 patients, respectively. Results: The median follow-up duration was 105.9 months. Five-year PFS rate was 70.9%. Tumor size or margin status was not related to PFS in univariate analysis (p = 0.197 and p = 0.716, respectively). Multivariate analysis showed that increased interval from surgery to PORT (>5.7 weeks) was a marginal risk factor for PFS (p = 0.054). Administration of PORT at the initial diagnosis resulted in significantly improved PFS compared to deferring PORT after recurrence (p = 0.045). Patient with both risk factors of deferring PORT after recurrence and interval from surgery to PORT >5.7 weeks had significantly lower 5-year PFS than patients without risk factor (34.1% vs. 100.0%; p = 0.012). Nuclear β-catenin intensity tended to inversely correlate with 5-year PFS, although it did not reach statistical significance (62.5% at low vs. 100.0% at high; p = 0.260). SMA intensity was not related to PFS (p = 0.700). Conclusion: PORT should be performed immediately after surgery irrespective of margin status or tumor size especially in recurrent case. Nuclear β-catenin staining intensity of IHC might correlate with local recurrence.

Fabrication and estimation of the plastic detector for measuring the contamination for beta-ray level of the kind of duct waste (배관류 폐기물의 베타선 오염도 측정용 플라스틱 검출기 제작 및 특성평가)

  • Kim Gye-Hong;Oh Won-Zin;Lee Kune-Woo;Seo Bum-Kyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.159-165
    • /
    • 2005
  • The characterization of radiological contamination inside pipes generated during the decommission of a nuclear facility is necessary before pipes can be recycled or disposed. But, existing direct measurements of radioactive contamination level using the survey-meter can not estimate the characteristic of contamination on a local area such as the pipe inside. Moreover, the measurement of surface contamination level using the indirect methods has many problems of an application because of the difficulty of collecting sample and contamination possibility of a worker when collecting sample. In this work, plastic scintillator was simulated by using Monte Carlo simulation method for detection of beta radiation emitted from internal surfaces of small diameter pipe. Simulation results predicted the optimum thickness and geometry of plastic scintillator at which energy absorption for beta radiation was maximized. In addition, the problem of scintillator processing and transferring the detector into the pipe inside was considered when fabricating the plastic detector on the basis of simulation results. The characteristic of detector fabricated was also estimated. As a result, it was confirmed that detector capability was suitable for the measurement of contamination level. Also, the development of a detector for estimating the radiological characteristic of contamination on a local area such as the pipe inside was proven to be feasible.

  • PDF

A Study of the Inorganic Scintillator Properties for a Phoswich Detector (Phoswich 검출기 제작을 위한 무기 섬광체 특성 연구)

  • Lee, Woo-Gyo;Kim, Yong-Kyun;Kim, Jong-Kyung;Tarasov, V.;Zelenskaya, O.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.4
    • /
    • pp.251-256
    • /
    • 2004
  • CsI(Tl), $CdWO_4(CWO),\;Bi_4Ge_3O_{12}(BGO)\;and\;Gd_2SiO_5:Ce(GSO)$ scintillators were studied to manufacture a phoswich detector. The maximum wavelengths of the CsI(Tl), CWO, BGO and GSO scintillators are 550 nm, 475 nm, 490 nm and 440 nm for the radioluminescence, and the absolute light outputs of the CsI(Tl), CWO, BGO and GSO scintillators are 54890 phonon/MeV, 17762 phonon/MeV, 8322 phonon/MeV and 8932 phonon/MeV with a neutral filter, and the decay time of the CsI(Tl), CWO, BGO and GSO scintillators is $1.3{\mu}s,\;8.17{\mu}s$, 213 ns and 37 ns by a single photon method. The phoswich detector which was manufactured with plastic and CsI(Tl) scintillators could separate the ${\beta}$ particle and ${\gamma}$ ray. The phoswich detector could also measure the pulse height spectra of the ${\beta}$ particle and ${\gamma}$ ray by a PSD method.

Immunohistochemical Studies for TIMP-1 and TIMP-2 Expression after Irradiation in Lung, Liver and Kidney of C57BL/6 Mouse (C57BL/96 Mouse의 폐, 간, 신장에서 방사선조사 후 TIMP-1, TIMP-2의 발현에 대한 면역조직화학적 연구)

  • Noh, Young-Ju;Ahn, Seung-Do;Kim, Jong-Hoon;Choi, Eun-Kyung;Chang, Hye-Sook
    • Radiation Oncology Journal
    • /
    • v.19 no.2
    • /
    • pp.181-189
    • /
    • 2001
  • Purpose : Changes in the balance between MMP and TIMP can have a profound effect on the composition in the extracellular matrix (ECM) and affect various cellular functions including adhesion, migration, differentiation of cells, and fibrosis and invasion and metastasis of cancer cells. Radiation therapy is a popular treatment modality for benign and malignant tumor, but the study for radiation effect on MMP and TIMP is scarce. In the current study, we have examined the expression of TIMP in fibrosis-prone (C57BL/6) mice after radiation. Methods and Materials : Adult female mice of $10\~12$ weeks were used. The whole body were irradiated using a Varian CL-4/100 with 2 and 10 Gy. Immunohistochemical staining was peformed according to Avidin Biotin complex method and evaluated by observing high power field. For TIMP-1, TIMP-2 antibodies, reactivity was assessed in the parenchymal cell and in the stromal cell. The scale of staining was assessed by combining the quantitative and qualiative intensity of staining. Results : TIMP-1 immunoreactivity did not change in lung. But, in liver, TIMP-1 immunoreactivity was localized in cytoplasm of hepatocyte and Kupffer cell. in kidney, TIMP-1 immunoreactivity was localized in cytoplasm of some tubular cell. Temporal variations were not seen. Dose-response relationship was not seen except kidney. TIMP-2 immunoreactivity in lung was a score (++) at 0 Gy and elevated to a score (+++) at 2 Gy. TIMP-2 immunoreactivity was a score (++) in liver at 0 Gy. TIMP-2 immunoreactivity was localized in cytoplasm of hepatocyte and Kupffer cell as same as patterns of TIMP-1 immunoreactivity. The TIMP-2 immunoreactivity in liver was elevated to (+++) at 2 Gy. Immunoreactivity to TIMP-2 in kidney was a score (+++) at 0 Gy and was not changed at 10 Gy. The score of TIMP-2 immunoreactivity was reduced to (++) at 2 Gy. TIMP-2 immunoreactivity was confined to tubules in kidney. Temporal variation of TIMP-2 immunoreactivity was irregular. Dose-response relationship of TIMP-2 immunoreactivity was not seen. Conclusions : Differences between intensity of expression of TIMP-1 and TIMP-2 in each organ was present. Expression of TIMP was localized to specific cell in each organ. Irradiation increased TIMP-1 immunoreactivity in the liver and the kidney. Irradiation increased TIMP-2 immunoreactivity in the lung. But, in the liver and the kidney, TIMP-2 expression to radiation was irregular. Temporal variation of TIMP-2 immunoreactivity was irregular. Dose-response relationship of TIHP-2 immunoreactivity was not seen. In the future, we expect that the study of immunohistochemical staining of longer period of postirradiation and quantitative analysis using western blotting and northern blotting could define the role of TIMP in the radiation induced tissue fibrosis.

  • PDF

An Analysis of Carbon-14 Metabolism for Internal Dosimetry at CANDU Nuclear Power Plants (중수로 원전 종사자의 방사선량 평가를 위한 $^{14}C$ 인체대사모델 분석)

  • Kim, Hee-Geun;Lee, Hyung-Seok;Ha, Gak-Hyun
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.207-213
    • /
    • 2003
  • Carbon-14 is one of the major radionuclides released by CANDU Nuclear Power Plants(NPPs). It is almost always emitted as gas through the stack. From CANDU NPPs about 95% of all carbon-14 is released as carbon dioxide. Carbon-14 is a low energy beta emitter which, therefore, gives only a small skin dose from external radiation. As carbon dioxide Is physiologically rather inert gases for man's metabolism, the inhalation dose is probably less than 1 % of the ingestion dose. But this source of carbon-14, formed in a closed, nor-oxidative environment, was subsequently released into the workplace as an insoluble particulate when these systems were opened lip for re-tubing at CANDU NPPs. As a part of the improvement of dosimetry program at Wolsong Nuclear Power Plants, the carbon-14 metabolism based on references was investigated and studied to setup the internal dosimetry program due to inhalation of carbon-14.

Application of In Situ Measurement for Site Remediation and Final Status Survey of Decommissioning KRR Site

  • Hong, Sang Bum;Nam, Jong Soo;Choi, Yong Suk;Seo, Bum Kyoung;Moon, Jei Kwon
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.173-178
    • /
    • 2016
  • Background: In situ gamma spectrometry has been used to measure environmental radiation, assumptions are usually made about the depth distribution of the radionuclides of interest in the soil. The main limitation of in situ gamma spectrometry lies in determining the depth distribution of radionuclides. The objective of this study is to develop a method for subsurface characterization by in situ measurement. Materials and Methods: The peak to valley method based on the ratio of counting rate between the photoelectric peak and Compton region was applied to identify the depth distribution. The peak to valley method could be applied to establish the relation between the spectrally derived coefficients (Q) with relaxation mass per unit area (${\beta}$) for various depth distribution in soil. The in situ measurement results were verified by MCNP simulation and calculated correlation equation. In order to compare the depth distributions and contamination levels in decommissioning KRR site, in situ measurement and sampling results were compared. Results and Discussion: The in situ measurement results and MCNP simulation results show a good correlation for laboratory measurement. The simulation relationship between Q and source burial for the source layers have exponential relationship for a variety depth distributions. We applied the peak to valley method to contaminated decommissioning KRR site to determine a depth distribution and initial activity without sampling. The observed results has a good correlation, relative error between in situ measurement with sampling result is around 7% for depth distribution and 4% for initial activity. Conclusion: In this study, the vertical activity distribution and initial activity of $^{137}Cs$ could be identifying directly through in situ measurement. Therefore, the peak to valley method demonstrated good potential for assessment of the residual radioactivity for site remediation in decommissioning and contaminated site.