• Title/Summary/Keyword: Beta Phase

Search Result 1,330, Processing Time 0.035 seconds

Combination of oxaliplatin and β-carotene suppresses colorectal cancer by regulating cell cycle, apoptosis, and cancer stemness in vitro

  • Junghyeun Lee;Seung Chul Heo;Yuri Kim
    • Nutrition Research and Practice
    • /
    • v.18 no.1
    • /
    • pp.62-77
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Colorectal cancer (CRC) is the third most common cancer worldwide with a high recurrence rate. Oxaliplatin (OXA) resistance is one of the major reasons hindering CRC therapy. β-Carotene (BC) is a provitamin A and is known to have antioxidant and anticancer effects. However, the combined effect of OXA and BC has not been investigated. Therefore, this study investigated the anticancer effects and mechanism of the combination of OXA and BC on CRC. MATERIALS/METHODS: In the present study, the effects of the combination of OXA and BC on cell viability, cell cycle arrest, and cancer stemness were investigated using HCT116, HT29, OXA-resistant cells, and human CRC organoids. RESULTS: The combination of OXA and BC enhanced apoptosis, G2/M phase cell cycle arrest, and inhibited cancer cell survival in human CRC resistant cells and CRC organoids without toxicity in normal organoids. Cancer stem cell marker expression and self-replicating capacity were suppressed by combined treatment with OXA and BC. Moreover, this combined treatment upregulated apoptosis and the stem cell-related JAK/STAT signaling pathway. CONCLUSIONS: Our results suggest a novel potential role of BC in reducing resistance to OXA, thereby enhances the anticancer effects of OXA. This enhancement is achieved through the regulation of cell cycle, apoptosis, and stemness in CRC.

Development and Physical Properties of Low-Trans Spread Fat from Canola and Fully Hydrogenated Soybean Oil by Lipase-Catalyzed Synthesis (카놀라유와 대두극도경화유로부터 효소적으로 합성된 저트랜스 스프레드 고체지의 특성)

  • Kim, Young-Joo;Lyu, Hyun-Kyeong;Shin, Jung-Ah;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.9
    • /
    • pp.1328-1334
    • /
    • 2010
  • Low-trans spread fat (LTSF) was produced by lipase-catalyzed synthesis of canola (CO) and fully hydrogenated soybean oil (FHSBO) at 65:35 (w/w). Blend of CO and FHSBO with 65:35 ratio was interesterified using Lipozyme TLIM (immobilized Thermomyces lanuginosus, 20% of total substrate) in a 1 L-batch type reactor at $70^{\circ}C$ with 500 rpm for 24 hr. Then, physicochemical melting properties of LTSF were compared with commercial spread fat. At $20^{\circ}C$, solid fat contents (SFC) of commercial spread fat as a control and LTSF were similar, showing 19.1 and 18.1%, respectively. Major compositional fatty acids of LTSF were C18:0, C18:1 and C18:2 (29.2, 41.8 and 13.3 wt%, respectively). Trans fatty acid content of the LTSF (0.2 wt%) was lower than that of commercial spread fat (5.5 wt%). In the RP-HPLC analysis from LTSF, major triacylglycerol (TAG) molecules were SOL (stearoyl-oleoyl-linoleyl), SOO, POS/PSP, and SOS. Also, polymorphic form and x-ray diffraction of LTSF showed coexistence of $\beta$' and $\beta$ form crystals.

Studies on the Changes of Sex Hormone Concentrations in Milk during the Reproductive Stages of Dairy Cows (유우의 번식과정에 따른 유즙중의 성호르몬 수준 변화에 관한 연구)

  • 김상근;이재근
    • Korean Journal of Animal Reproduction
    • /
    • v.9 no.1
    • /
    • pp.9-30
    • /
    • 1985
  • The study was carried out to find out the changes of the sex hormone levels in the milk of Holstein cows during the reproductive stages such as the estrous cycle, pregnancy and periparturient period. The FSH, LH, estradiol-17$\beta$ and progesterone from the milk samples were assayed by radioimmunoassay methods. The results of this study were summarized as follows: 1. The levels of progesterone and estradiol-17$\beta$ were similar among inter-quarters, but they were higher in after milking than before milking times, with no statistical significance. 2. The milk progesterone levels during the estrous cycles reached a peak mean level of 3.55$\pm$0.26ng/$m\ell$ at 15 days after estrus and they did not show any differences among the length of estrous cycles. The estradiol-17$\beta$ levels during the estrous cycles showed a peak level of 36.40$\pm$2.38pg/$m\ell$ at estrus, and decreased(17.20$\pm$0.46 pg/$m\ell$ to 18.65$\pm$1.26pg/$m\ell$) at luteal phase. 3. The FSH levels during the estrous cycles ranged from 2.25$\pm$0.23mIU/$m\ell$ to 4.35$\pm$0.24mIU/$m\ell$ showing significant changes. The LH levels during the estrous cycles gradually increased and remained a peak level of 10.90$\pm$0.36mIU/$m\ell$ from 20 to 25 days after estrus. 4. The progesterone levels during the pregnancy were decreased from 30 to 60 days after artificial insemination, and therafter continuously increased until 240 days. The estradiol-17$\beta$ levels during the pregnancy were 24.56$\pm$1.19pg/$m\ell$ at day 30 after artificial inseminaton, and increased rapidly until 180 days. The levles were agagin decreased by 26.17$\pm$3.03pg/$m\ell$ until 210 days and markedly increased by 68.00$\pm$8.70pg/$m\ell$ until 240 days. 5. The prolactin levels during the pregnancy were 31.27$\pm$2.31ng/$m\ell$ and 42.60$\pm$2.37ng/$m\ell$ at day 150 and 240 after artificial insemination respectively. The LH levels during the pregnancy reached a peak of 27.47$\pm$7.90mIU/$m\ell$ at day 30 after artificial insemination, and thereafter gradually decreased. 6. The progesterone levels during the periparturient period reached a peak of 4.61$\pm$0.34ng/$m\ell$ at day 3 prepartum, and thereafter gradually decreased, and showed 2.05$\pm$0.60ng/$m\ell$ at day 7 postpartum. The estradiol-17$\beta$ levels during the periparturient period showed high level from 207.23$\pm$6.04pg/$m\ell$ at day 1 prepartum to 239.90$\pm$13.90pg/$m\ell$ at day 2 prepartum, and thereafter began to decline and reached 51.87$\pm$1.72pg/$m\ell$ at by 7 postpartum. 7. The prolactin levels during the periparturient period showed relatively higher level at the time of parturition. The LH levels during the periparturient period rnage from 6.32$\pm$0.32mIU/$m\ell$ to 13.90$\pm$1.37mIU/$m\ell$ showing significant changes. 8. The progesterone levels(4.6$\pm$0.8ng/$m\ell$) of the pregnant cows were significantly higher than those (1.84$\pm$1.4ng/$m\ell$) of nonpregnant cows. The cows of artificial insemination from 61 to 90 days after parturition showed higher progesterone levels. 9. During 20 to 25 days after artificial insemination, the accuracy of pregnancy diagnosis from milk progesterone levels were 94.4% for nonpregnant cows(<2.3ng/$m\ell$), and 75.0% for pregnant cows( 3.2ng/$m\ell$). The average overall accuracy of pregnancy prediction for nonpregnant and pregnant cows 83.3% 10. The results obtained this study suggest that the understanding of the endocrinological mechanisms by means of milk hormone analysis during the estrous cycle, pregnancy and parturition would give the basic information needed for increasing efficiency of reproduction. This study would not only provide an accurate method of the early pregnancy diagnosis by milk progesterone levels but also contribute to the research of providing the method of detecting of FSH levels in milk, which was difficult in blood serum.

  • PDF

Characterization of Scaled-up Low-Trans Shortening from Rice Bran Oil and High Oleic Sunflower Seed Oil with Batch Type Reactor (회분식반응기를 이용한 미강유, 팜스테아린과 고올레인산 해바라기씨유 유래 대량 제조된 저트랜스 쇼트닝의 특성 연구)

  • Kim, Ji-Young;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.3
    • /
    • pp.338-345
    • /
    • 2009
  • Scaled-up low-trans shortening (LTS) was produced by lipase-catalyzed interesterification. Blend of rice bran oil (RBO), palm stearin (PS) and high oleic sunflower seed oil (HO) with 1:2:0.9 (w/w/w) ratio was interesterified using immobilized lipase from Thermomyces lanuginosus (TLIM) in the batch type reactor at $65^{\circ}C$ for 24 hr, and physicochemical melting properties of LTS were compared with commercial shortening. Solid fat content (SFC) of commercial shortening (used as control) and LTS was similar at 9.56 and 8.77%, respectively, at $35^{\circ}C$. Major fatty acids in LTS were C16:1 (33.7 wt%), C18:1 (45.7 wt%) and C18:2 (13.4 wt%). Trans fatty acid content in the commercial shortening (4.8 wt%) was higher than that of LTS (0.5 wt%). After reverse-phase HPLC analysis, major triacylglycerol (TAG) species in LTS were POO, POP and PLO. Total tocopherol, ${\gamma}$-oryzanol and phytosterol contents in the LTS were 12.37, 0.43 and 251.38 mg/100 g, respectively. Hardness of LTS was similar to that of commercial shortening. Also, x-ray diffraction analysis showed coexistence of ${\beta}'$ and ${\beta}$ form in the LTS.

Effect of Prostaglandin F2 Alpha on E-cadherin, N-cadherin and Cell Adhesion in Ovarian Luteal Theca Cells (난소의 황체협막세포에서 E-cadherin, N-cadherin과 세포부착에 미치는 Prostaglandin F2 Alpha의 영향)

  • Lee, Sang-Hee;Jung, Bae Dong;Lee, Seunghyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.3
    • /
    • pp.360-369
    • /
    • 2019
  • Cadherins are essential transmembrane proteins that promote cell-cell adhesion and maintain the corpus luteum structure in the ovary. This study examined the influence of prostaglandin F2 alpha ($PGF2{\alpha}$) on E-cadherin, N-cadherin, and adhesion in luteal theca cells (LTCs). The luteal cells were isolated from the mid-phase corpus luteum, and the LTCs were cultured separately from the luteal heterogeneous cells according to the morphology of the mesenchymal cells and to determine if steroidogenic and endothelial cells of LTCs, 3beta-hydroxysteroid dehydrogenase ($3{\beta}$-HSD), and vascular endothelial growth factor receptor 2 (VEGFR2) mRNA were used. The LTCs were then incubated in the culture medium supplemented with 0.01, 0.1, and 1.0 mM $PGF2{\alpha}$ for 24 h, and the E-cadherin and N-cadherin proteins in the LTCs were detected by confocal laser scanning microscopy. The results revealed $3{\beta}$-HSD mRNA expression in the LTC but no VEGF2R mRNA expression. The E-cadherin and N-cadherin proteins of the LTCs were damaged in the 0.01, 0.1, and 1.0 mM $PGF2{\alpha}$ treatment groups, and the expression of the N-cadherin protein was reduced significantly in 0.01 mM $PGF2{\alpha}$ compared to the 0 mM $PGF2{\alpha}$ treatment groups (P<0.05). In addition, the number of attached LTCs were significantly lower in the 0.01 mM $PGF2{\alpha}$ treatment group than in the 0 mM $PGF2{\alpha}$ treatment group (P<0.05). In conclusion, $PGF2{\alpha}$ affected the disruption of cadherin proteins and cell adhesion in LTCs. These results may help better understand the cadherin and adhesion mechanism during corpus luteum regression in the ovary.

Use of Biosurfactant for the Removal of Organic Pollutants in Soil/Groundwater (바이오 계면활성제에 의한 토양/지하수내 유기성 오염물질 제거)

  • Ko, Seok-Oh;Yoon, Seok-Pyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.193-201
    • /
    • 2000
  • Partitioning of hydrophobic organic compounds (HOCs) to a biosurfactant, hydroxypropyl-${\beta}$-cyclodextrin (HPCD), was conducted to evaluate the feasibility of using HPCD to remove HOCs from soil/groundwater. HOC partitioning to HPCD was very fast, with over 95% of the complexation occurring within 10 min. Some influence of solution chemistry and HOC concentration on HOC-HPCD complex formation coefficients was observed. HPCD sorption on soil as quantified by both a fluorescence technique and total organic carbon measurements was negligible, indicating no significant affinity of HPCD for the solid phase. Although the HOC solubilization capability of HPCD was lower than that of synthetic surfactants such as SDS and Tween 80, HPCD can be effective in removing sorbed HOCs from a model subsurface environment, primarily because of its negligible sorption to the solid phase (i.e., all the HPCD added facilitates HOC elution). However, in contrast with conventional surfactants, HPCD becomes relatively less effective for HOC partitioning with increasing HOC size and hydrophobicity. Therefore, comparisons between HPCD and synthetic surfactants for enhanced remediation applications must consider the specific HOC(s) present and the potential for surfactant material losses to the solid phase, as well as other more generally recognized considerations such as material costs and potential toxicological effects.

  • PDF

Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive Ceramic Composites (상압소결(常壓燒結)한 SiC-$ZrB_2$ 전도성(電導性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun;Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2015-2022
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressurless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6 : 4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of $8\;{\sim}\;20$[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.02[%], 81.58[MPa], 31.44[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from $\beta$-SiC into $\alpha$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of $3.l4{\times}10^{-2}{\Omega}{\cdot}cm$ for $SiC-ZrB_2$ composite added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at 700[$^{\circ}C$]. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all negative temperature coefficient resistance (NTCR) in the temperature ranges from room temperature to 700[$^{\circ}C$]. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

Development of Electroconductive SiC-$ZrB_2$ Ceramic Heater and Electrod by Spark Plasma Sintering (SPS에 의한 SiC-$ZrB_2$계 전도성 세라믹 발열체 및 전극 개발)

  • Shin, Yong-Deok;Ju, Jin-Young;Kim, Jae-Jin;Lee, Jung-Hoon;Kim, Cheol-Ho;Choi, Won-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1254_1255
    • /
    • 2009
  • The composites were fabricated by adding 30, 35, 40, 45[vol.%] Zirconium Diboride(hereafter, $ZrB_2$) powders as a second phase to Silicon Carbide(hereafter, SiC) matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by Spark Plasma Sintering(hereafter, SPS) were examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed in the XRD analysis. The relative density of SiC+30[vol.%]$ZrB_2$, SiC+35[vol.%]$ZrB_2$, SiC+40[vol.%]$ZrB_2$ and SiC+45[vol.%]$ZrB_2$ composites are 88.64[%], 76.80[%], 79.09[%] and 88.12[%], respectively. The XRD phase analysis of the electroconductive SiC ceramic composites reveals high of SiC and $ZrB_2$ and low of $ZrO_2$ phase. The electrical resistivity of SiC+30[vol.%]$ZrB_2$, SiC+35[vol.%]$ZrB_2$, SiC+40[vol.%]$ZrB_2$ and SiC+45[vol.%]$ZrB_2$ composites are $6.74{\times}10^{-4}$, $4.56{\times}10^{-3}$, $1.92{\times}10^{-3}$ and $4.95{\times}10^{-3}[{\Omega}{\cdot}cm]$ at room temperature, respectively. The electrical resistivity of SiC+30[vol.%]$ZrB_2$, SiC+35[vol.%]$ZrB_2$, SiC+40[vol.%]$ZrB_2$ and SiC+45[vol.%]$ZrB_2$ are Positive Temperature Coefficient Resistance(hereafter, PTCR) in temperature ranges from 25[$^{\circ}C$] to 500[$^{\circ}C$]. It is convinced that SiC+40[vol.%]$ZrB_2$ composite by SPS can be applied for heater or electrode.

  • PDF

The Development of an Electroconductive SiC-ZrB2 Ceramic Heater through Spark Plasma Sintering

  • Ju, Jin-Young;Kim, Cheol-Ho;Kim, Jae-Jin;Lee, Jung-Hoon;Lee, Hee-Seung;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.538-545
    • /
    • 2009
  • The SiC-$ZrB_2$ composites were fabricated by combining 30, 35, 40 and 45vol.% of Zirconium Diboride (hereafter, $ZrB_2$) powders with Silicon Carbide (hereafter, SiC) matrix. The SiC-$ZrB_2$ composites, the sintered compacts, were produced through Spark Plasma Sintering (hereafter, SPS), and its physical, electrical, and mechanical properties were examined. Also, the thermal image analysis of the SiC-$ZrB_2$ composites was examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed via X-Ray Diffractometer (hereafter, XRD) analysis. The relative density of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$, and SiC+45vol.%$ZrB_2$ composites were 88.64%, 76.80%, 79.09% and 88.12%, respectively. The XRD phase analysis of the sintered compacts demonstrated high phase of SiC and $ZrB_2$ but low phase of $ZrO_2$. Among the SiC-$ZrB_2$ composites, the SiC+35vol.%$ZrB_2$ composite had the lowest flexural strength, 148.49MPa, and the SiC+40vol.%$ZrB_2$ composite had the highest flexural strength, 204.85MPa, at room temperature. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ and SiC+45vol.%$ZrB_2$ composites were $6.74\times10^{-4}$, $4.56\times10^{-3}$, $1.92\times10^{-3}$, and $4.95\times10^{-3}\Omega{\cdot}cm$ at room temperature, respectively. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$ SiC+40vol.%$ZrB_2$ and SiC+45[vol.%]$ZrB_2$ composites had Positive Temperature Coefficient Resistance (hereafter, PTCR) in the temperature range from $25^{\circ}C$ to $500^{\circ}C$. The V-I characteristics of the SiC+40vol.%$ZrB_2$ composite had a linear shape. Therefore, it is considered that the SiC+40vol.%$ZrB_2$ composite containing the most outstanding mechanical properties, high resistance temperature coefficient and PTCR characteristics among the sintered compacts can be used as an energy friendly ceramic heater or electrode material through SPS.

Effects of graded levels of cupric citrate on growth performance, antioxidant status, serum lipid metabolites and immunity, and tissue residues of trace elements in weaned pigs

  • Peng, Chu Cai;Yan, Jia You;Dong, Bin;Zhu, Lin;Tian, Yao Yao;Gong, Li Min
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.538-545
    • /
    • 2017
  • Objective: The goal of this study was to investigate the effects of cupric citrate (CuCit) on growth performance, antioxidant indices, serum lipid metabolites, serum immune indices, and tissue residues of copper (Cu), zinc, and iron in weaned pigs. Methods: A total of 180 weaned pigs ($Duroc{\times}Landrace{\times}Large$ White) with an average body weight of $8.98{\pm}1.21kg$ were randomly assigned to a corn-soybean meal control ration, or 4 similar rations with 30, 60, 120, or 240 mg/kg Cu as CuCit. All diets contained 10 mg/kg Cu as cupric sulfate from the vitamin-mineral premix. The experiment was divided into two phases: 0 to 14 d (phase 1) and 15 to 28 d (phase 2). Results: Average daily gain (ADG; linearly, p<0.01) and average daily feed intake (ADFI; linearly and quadratically, p<0.05) were affected by an increase in CuCit during phase 2. Overall period, ADG (p<0.05) and ADFI (p<0.01) were linearly increased with increasing dietary levels of CuCit. Serum malondialdehyde concentrations (p<0.05) and glutathione peroxidase activity (p<0.01) linearly decreased and increased respectively with an increase in CuCit. Serum levels of Cu-Zn superoxide dismutase were linearly affected with an increase in CuCit (p<0.01). Hepatic malondialdehyde levels decreased with an increase in CuCit (linearly and quadratically, p<0.01). Serum total cholesterol concentrations were quadratically affected (p<0.05) and decreased in pigs fed Cu as CuCit at 60 and 120 mg/kg and increased in pigs fed 240 mg/kg Cu as CuCit. Serum high-density lipoprotein concentrations were linearly affected with an increase in CuCit (p<0.01). Serum $IL-1{\beta}$ levels were quadratically affected (p<0.05) by dietary treatment. Compared with other treatments, 240 mg/kg Cu from CuCit quadratically increased hepatic (p<0.01) and renal (p<0.05) Cu concentrations, and quadratically decreased hepatic and renal iron concentrations (p<0.05). Conclusion: Cu administered in the form of CuCit at a dosage range of 30 to 60 mg/kg, effectively enhanced the growth performance and antioxidant status of weaned pigs.