• 제목/요약/키워드: Beta Agonist

검색결과 178건 처리시간 0.036초

${\beta}_1/{\beta}_2$ 비선택적 Radioligand $(-)-[^3H]-DHA$를 사용한 Rat 좌심실 ${\beta}-adrenoceptor$에 대한 심장순환계 약물의 Binding (Binding Studies of Cardiovascular Drug on ${\beta}$ Adrenoceptors in Rat Left Ventricle using $(-)-[^3H]-DHA$, $Non-{\beta}_1/{\beta}_2-selective$ Radioligand)

  • 권광일;이선경;유성은
    • 대한약리학회지
    • /
    • 제27권2호
    • /
    • pp.119-123
    • /
    • 1991
  • ${\beta}-$수용체 효능약물 ((-)-NE), 길항약물 $((\pm)-propranolol,\;labetalol)$ 및 PDE 억제약물(imazodan, KR-30045, KR-30075 등)에 대한 ${\beta}-adrenoceptor$ binding 실험을 ${\beta}_1/{\beta}_2$ 비선택적 radioligand인 $(-)-[^3H]-DHA$를 사용하여 실시하였다. Saturation 실험에서 ${\beta}_1$${\beta}_2$ 수용체를 모두 갖고 있는 rat 좌심실의 ${\beta}$ 수용체에 대한 $(-)-[^3H]-DHA$$K_d$ 값은 $1.5{\pm}0.43\;nM$, $B_{max}$$22.0{\pm}0.9\;fmol/mg$ protein이었다. $({\pm})propranolol$, labetalol 및 (-)NE는 단일상으로 $(-)-[^3H]-DHA$의 결합을 억제하였으며 Ki 값은 각각 $17.0{\pm}0.43\;nM$, $57.3{\pm}1.30\;nM$, $1.57{\pm}0.95\;{\mu}M$로 나타났다. 실험에 사용한 모든 PDE 억제약물들은 $(-)-[^3H]-DHA$ 결합을 $10^{-3}\;M$의 고농도에서도 10% 미만으로 억제했다. 실험결과, propraolol, labetalol 및 NE는 ${\beta}_1/{\beta}_2$ 수용체에 대해 비선택적인 약물로 나타났으며, imazodan 및 신합성 PDE 억제약물들은 rat 심근에 있는 ${\beta}-$수용체에 친화성이 거의 없음을 알 수 있었다.

  • PDF

Effects of lipoic Acid on Plasma Metabolites and Metabolic Response to Intravenous Injection of Isoproterenol in Broilers

  • Hamano, Y.;Kamota, Y.;Sugawara, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권5호
    • /
    • pp.653-658
    • /
    • 2000
  • To examine the effects of lipoic acid on metabolic response to a ${\beta}$-agonist, isoproterenol, in broilers, chicks were fed dietary lipoic acid at levels of 0 (control) or 50 mg/kg for 24 d. At 27 d of age, chickens were randomly selected. Isoproterenol dissolved in 0.9% saline was injected into the wing vein at a dosage of 2 mg per kg BW; then, blood samples were taken at 0, 10, 20, 30, 60, 90, 120, and 180 min. Amounts of plasma glucose, NEFA, triglyceride and total cholesterol were determined. Dietary lipoic acid reduced only plasma total cholesterol by 25%. Following isoproterenol injection, plasma glucose in both groups increased for 20 min; then, it returned to its basal concentration. In contrast, the maximal reductions in plasma NEFA and triglyceride in both groups (20 to 30 min) were confirmed by isoproterenol injection. In addition, while glucose returned to the basal level, plasma NEFA in the lipoic acid-treated chickens increased above the basal or control value during the 60 to 180 min post-injection. The present study suggests that the dietary administration of lipoic acid elicits fatty acid mobilization in ${\beta}$-adrenergic response to isoproterenol when the basal level of plasma glucose is maintained.

Pharmacological Effects of KR60886, A New β3 Adrenoceptor Agonist

  • Lee, Sang-Suk;Yang, Sung-Don;Ha, Jae-Du;Choi, Joong-Kwon;Cheon, Hyae-Gyeong
    • Biomolecules & Therapeutics
    • /
    • 제12권4호
    • /
    • pp.215-220
    • /
    • 2004
  • In an attempt to develop new anti-diabetic agents, a series of aryloxypropanolamine derivatives was synthesized to serve as ${\beta}_3$ adrenoceptor agonists. Among these derivatives, 1-{1-methyl-3-[4-(2-methyl-2H-1,2,3,4-tetrazol-5-yl)phenyl]propylamino}-3-phenoxy-2-propanol (KR60886) possessed a high affinity for the ${\beta}_3$ adrenoceptor (Ki = 28 nM) and moderate affinities for ${\beta}_1$ and ${\beta}_2$ adrenoceptors (Ki = 95 nM and 100 nM, respectively). In addition, KR60886 stimulated cAMP production with an EC$_{50}$ of 0.4 ${\mu}M$, confirming its agonistic activity for the ${\beta}_3$ adrenoceptor. In vivo activities of KR60886 were examined by using a fat-fed/streptozotocin (STZ)-treated rat model and the ob/ob mouse model. Oral administration of KR60886 (10 mg/kg) for 3 days (b.i.d.) to fat-fed/STZ-treated rats significantly lowered plasma glucose levels and reduced plasma free fatty acid concentrations. Similarly, KR60886 treatment (10 mg/kg/day for 7 d) resulted in a reduction of plasma glucose concentrations in ob/ob mice. The present study suggests that KR60886 is a potent ${\beta}_3$ receptor agonist with in vivo anti-diabetic properties.

Nuclear Receptor PPARα Agonist Wy-14,643 Ameliorates Hepatic Cell Death in Hepatic IKKβ-Deficient Mice

  • Kim, Taehyeong;Wahyudi, Lilik Duwi;Gonzalez, Frank J.;Kim, Jung-Hwan
    • Biomolecules & Therapeutics
    • /
    • 제25권5호
    • /
    • pp.504-510
    • /
    • 2017
  • Inhibitor of nuclear factor kappa-B kinase beta ($IKK{\beta}$) plays a critical role in cell proliferation and inflammation in various cells by activating $NF-{\kappa}B$ signaling. However, the interrelationship between peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) and $IKK{\beta}$ in cell proliferation is not clear. In this study, we investigated the possible role of $PPAR{\alpha}$ in the hepatic cell death in the absence of $IKK{\beta}$ gene using liver-specific Ikkb-null ($Ikkb^{F/F-AlbCre}$) mice. To examine the function of $PPAR{\alpha}$ activation in hepatic cell death, wild-type ($Ikkb^{F/F}$) and $Ikkb^{F/F-AlbCre}$ mice were treated with $PPAR{\alpha}$ agonist Wy-14,643 (0.1% w/w chow diet) for two weeks. As a result of Wy-14,643 treatment, apoptotic markers including caspase-3 cleavage, poly (ADP-ribose) polymerase (PARP) cleavage and TUNEL-positive staining were significantly decreased in the $Ikkb^{F/F-AlbCre}$ mice. Surprisingly, Wy-14,643 increased the phosphorylation of p65 and STAT3 in both Ikkb and $Ikkb^{F/F-AlbCre}$ mice. Furthermore, BrdU-positive cells were significantly increased in both groups after treatment with Wy-14,643. Our results suggested that $IKK{\beta}-derived$ hepatic apoptosis could be altered by $PPAR{\alpha}$ activation in conjunction with activation of $NF-{\kappa}B$ and STAT3 signaling.

P2X and P2Y Receptors Mediate Contraction Induced by Electrical Field Stimulation in Feline Esophageal Smooth Muscle

  • Cho, Young-Rae;Jang, Hyeon-Soon;Kim, Won;Park, Sun-Young;Sohn, Uy-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권5호
    • /
    • pp.311-316
    • /
    • 2010
  • It is well-known that electrical field stimulation (EFS)-induced contraction is mediated by a cholinergic mechanism and other neurotransmitters. NO, ATP, calcitonin gene-related peptide (CGRP), and substance P are released by EFS. To investigate the purinergic mechanism involved in the EFS-induced contraction, purinegic receptors antagonists were used. Suramine, a non-selective P2 receptor antagonist, reduced the contraction induced by EFS. NF023 ($10^{-7}{\sim}10^{-4}M$), a selective P2X antagonist, inhibited the contraction evoked by EFS. Reactive blue ($10^{-6}{\sim}10^{-4}M$), selective P2Y antagonist, also blocked the contraction in a dose-dependent manner. In addition, P2X agonist ${\alpha}$,${\beta}$-methylene 5'-adenosine triphosphate (${\alpha}{\beta}MeATP$, $10^{-7}{\sim}10^{-5}M$) potentiated EFS-induced contraction in a dose-dependent manner. P2Y agonist adenosine 5'-[${\beta}$-thio]diphosphate trilithium salt ($ADP{\beta}S$, $10^{-7}{\sim}10^{-5}M$) also potentiated EFS-induced contractions in a dose-dependent manner. Ecto-ATPase activator apyrase (5 and 10 U/ml) reduced EFS-induced contractions. Inversely, 6-N,$N$-diethyl-D-${\beta}$,${\gamma}$- dibromomethylene 5'-triphosphate triammonium (ARL 67156, $10^{-4}M$) increased EFS-induced contraction. These data suggest that endogenous ATP plays a role in EFS-induced contractions which are mediated through both P2X-receptors and P2Y-receptors stimulation in cat esophageal smooth muscle.

Effects of Whole Body Irradiation on Morphine, DAMGO, DPDPE, U50,488H and $\beta$-endorphin-Induced Antinociception

  • Park, Tae-Won;Kim, Jin-Kyu;Jeong, Jae-Soo;Kim, Tae-Wan;Cho, Young-Kyung;Kim, Kyung-Nyun;Chung, Ki-Myung
    • International Journal of Oral Biology
    • /
    • 제37권1호
    • /
    • pp.1-7
    • /
    • 2012
  • Opioid receptors have been pharmacologically classified as ${\mu}$, ${\delta}$, ${\kappa}$ and ${\varepsilon}$. We have recently reported that the antinociceptive effect of morphine (a ${\mu}$-opioid receptor agonist), but not that of ${\beta}$-endorphin (a novel ${\mu}/{\varepsilon}$-opioid receptor agonist), is attenuated by whole body irradiation (WBI). It is unclear at present whether WBI has differential effects on the antinociceptive effects of ${\mu}-$, ${\delta}-$, ${\kappa}-$ and ${\varepsilon}$-opioid receptor agonists. In our current experiments, male ICR mice were exposed to WBI (5Gy) from a $^{60}Co$ gamma-source and the antinociceptive effects of opioid receptor agonists were assessed two hours later using the hot water ($52^{\circ}C$) tail-immersion test. Morphine and $D-Ala^2$, $N-Me-Phe^4$, Gly-olenkephalin (DAMGO), [$D-Pen^2-D-Pen^5$] enkephalin (DPDPE), trans-3,4-Dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]-benzeneacetamide (U50,488H), and ${\beta}$-endorphin were tested as agonists for ${\mu}$, ${\delta}$, ${\kappa}$, and ${\varepsilon}$-opioid receptors, respectively. WBI significantly attenuated the antinociceptive effects of morphine and DAMGO, but increased those of ${\beta}$-endorphin. The antinociceptive effects of DPDPE and U50,488H were not affected by WBI. In addition, to more preciously understand the differential effects of WBI on ${\mu}-$ and ${\varepsilon}$-opioid receptor agonists, we assessed pretreatment effects of ${\beta}$-funaltrexamine (${\beta}$-FNA, a ${\mu}$-opioid receptor antagonist) or ${\beta}$-$endorphin_{1-27}$ (${\beta}$-$EP_{1-27}$, an ${\varepsilon}$-opioid receptor antagonist), and found that pretreatment with ${\beta}$-FNA significantly attenuated the antinociceptive effects of morphine and ${\beta}$-endorphin by WBI. ${\beta}$-$EP_{1-27}$ significantly reversed the attenuation of morphine by WBI and significantly attenuated the increased effects of ${\beta}$-endorphin by WBI. The results demonstrate differential sensitivities of opioid receptors to WBI, especially for ${\mu}-$ and ${\varepsilon}$-opioid receptors.

Paired Ig-Like Type 2 Receptor-Derived Agonist Ligands Ameliorate Inflammatory Reactions by Downregulating β1 Integrin Activity

  • Lee, Kyoung-Jin;Lim, Dongyoung;Yoo, Yeon Ho;Park, Eun-Ji;Lee, Sun-Hee;Yadav, Birendra Kumar;Lee, Yong-Ki;Park, Jeong Hyun;Kim, Daejoong;Park, Kyeong Han;Hahn, Jang-Hee
    • Molecules and Cells
    • /
    • 제39권7호
    • /
    • pp.557-565
    • /
    • 2016
  • The paired immunoglobulin-like type 2 receptor (PILR) family consists of two functionally opposite members, inhibitory $PILR{\alpha}$ and activating $PILR{\beta}$ receptors. PILRs are widely expressed in various immune cells and interact with their ligands, especially CD99 expressed on activated T cells, to participate in immune responses. Here we investigated whether PILR-derived agonists inhibit ${\beta}1$ integrin activity as ligands for CD99. PILR-derived peptides as well as PILR-Fc fusion proteins prevented cell adhesion to fibronectin through the regulation of ${\beta}1$ integrin activity. Especially, PILRpep3, a representative 3-mer peptide covering the conserved motifs of the PILR extracellular domain, prevented the clustering and activation of ${\beta}1$ integrin by dephosphorylating FAK and vinculin, which are major components of focal adhesion. In addition, PILRpep3 inhibited transendothelial migration of monocytes as well as endothelial cell tube formation. Furthermore, upon intraperitoneal injection of PILRpep3 into mice with collagen-induced arthritis, the inflammatory response of rheumatoid arthritis was strongly suppressed. Taken together, these results suggest that PILR-derived agonist ligands may prevent the inflammatory reactions of rheumatoid arthritis by activating CD99.

치수세포에서 PPARγ의 항 염증작용에 관한 연구 (ANTI-INFLAMMATORY EFFECTS OF PPARγ ON HUMAN DENTAL PULP CELLS)

  • 김정희
    • Restorative Dentistry and Endodontics
    • /
    • 제31권3호
    • /
    • pp.203-214
    • /
    • 2006
  • 치수는 상아질로 둘러싸인 간엽조직으로 다양한 세포와 기저 물질들로 구성되어 있으며 혈관과 신경조직이 분포되어 있다. 치수의 염증은 조직의 분해를 야기하며 이는 Matrix Metalloproteinase에 의해 세포 외 기질의 분해가 촉진되어 병적인 과정을 거치게 된다. 이에 Lipopolysaccharide에 의한 MMP와 inflammatory cytokine의 유도와 peroxisome proliferator-activated receptors (PPAR)에 의한 염증매개 물질의 조절에 대해 알아보고자 하였다. 사람의 치수세포를 다양한 LPS농도에 노출시킨 후 24시간째 MMP-2, MMP-9의 변화를 보고 LPS에 의해 자극된 치수세포에서 ICAM-1, VCAM-1, $IL-1{\beta},\;TNF-{\alpha}$의 분비가 증가됨을 알 수 있었다. 또한 Adenovirus $PPAR{\gamma}\;(Ad/PPAR{\gamma})$$PPAR{\gamma}$ agonist인 rosiglitazone를 LPS로 자극된 치수세포에 처리하였을 때 48시간째 MMPs와 Adhesion molecules, cytokines의 감소를 확인하였다. 이로써 사람의 치수세포에서 $PPAR{\gamma}$가 가지는 항 염증효과에 대해 지속적 인 연구가 필요할 것으로 사료된다.

Peroxisome Proliferator-Activated Receptor Gamma Agonist Attenuates Liver Fibrosis by Several Fibrogenic Pathways in an Animal Model of Cholestatic Fibrosis

  • Alatas, Fatima Safira;Matsuura, Toshiharu;Pudjiadi, Antonius Hocky;Wijaya, Stephanie;Taguchi, Tomoaki
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제23권4호
    • /
    • pp.346-355
    • /
    • 2020
  • Purpose: Peroxisome proliferator-activated receptor gamma (PPAR-γ) has a key role in hepatic fibrogenesis by virtue of its effect on the hepatic stellate cells (HSCs). Although many studies have shown that PPAR-γ agonists inhibit liver fibrosis, the mechanism remains largely unclear, especially regarding the cross-talk between PPAR-γ and other potent fibrogenic factors. Methods: This experimental study involved 25 male Wistar rats. Twenty rats were subjected to bile duct ligation (BDL) to induce liver fibrosis, further divided into an untreated group (BDL; n=10) and a group treated with the PPAR-γ agonist thiazolidinedione (TZD), at 14 days post-operation (BDL+TZD; n=10). The remaining 5 rats had a sham operation (sham; n=5). The effect of PPAR-γ agonist on liver fibrosis was evaluated by histopathology, protein immunohistochemistry, and mRNA expression quantitative polymerase chain reaction. Results: Histology and immunostaining showed markedly reduced collagen deposition, bile duct proliferation, and HSCs in the BDL+TZD group compared to those in the BDL group (p<0.001). Similarly, significantly lower mRNA expression of collagen α-1(I), matrix metalloproteinase-2, platelet-derived growth factor (PDGF)-B chain, and connective tissue growth factor (CTGF) were evident in the BDL+TZD group compared to those in the BDL group (p=0.0002, p<0.035, p<0.0001, and p=0.0123 respectively). Moreover, expression of the transforming growth factor beta1 (TGF-β1) was also downregulated in the BDL+TZD group (p=0.0087). Conclusion: The PPAR-γ agonist inhibits HSC activation in vivo and attenuates liver fibrosis through several fibrogenic pathways. Potent fibrogenic factors such as PDGF, CTGF, and TGF-β1 were downregulated by the PPAR-γ agonist. Targeting PPAR-γ activity may be a potential strategy to control liver fibrosis.

천식치료의 최신지견 (Update in asthma management)

  • 이혜란
    • Clinical and Experimental Pediatrics
    • /
    • 제49권6호
    • /
    • pp.581-588
    • /
    • 2006
  • Asthma is a chronic inflammation of the airway associated with increased bronchial hyperresponsiveness that leads to recurrent episodes of cough, wheezing, breathless, chest tightness. According the recent studies, repeated airway inflammation leads to structural changes so called 'airway remodeling' and associated with decreased pulmonary function. Airway remodeling begins form the early stage of asthma and the early diagnosis and management is very important to prevent airway remodeling. Medication for asthma can be classified into acute symptom reliever and chronic controller. Short acting beta2 agonist is a well-known reliever that reduced asthma symptoms within minutes. Controllers should be taken daily as a long-term basis to control airway inflammation. Inhaled corticosteroid(ICS) is the most effective controller in current use. However, in some patients ICS monotherapy is not sufficient to control asthma. In those cases, other medications such as long acting beta2 agonist, leukotriene modifier or sustained-release theophylline should be added to ICS, which called Add-on-Therapy. Combination inhaler devices are easy to use. Oral leukotriene modifier has a good compliance especially in children. Finally, as asthma is a chronic disease, the development of on-going partnership among health care professionals, the patients, and the patients' family is necessary for the effective management of asthma.