• Title/Summary/Keyword: Berthing maneuver

Search Result 13, Processing Time 0.02 seconds

The Prediction of Hydrodynamic Forces Acting on Ship Hull Undergoing Lateral Berthing Maneuver Using CFD (CFD을 이용한 선박 접이안시 유체력 추정에 관한 연구)

  • 이윤석;정겸광행;공길영;김순값;이충로
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.132-138
    • /
    • 2003
  • In order to evaluate properly ship motion relating to the berthing maneuver, the hydrodynamic forces acting on ship hull in berthing maneuver need to be estimated rightly. CFD has been employed for time-domain simulation of transient flow induced by Wigley model moving laterally from rest in shallow water. The numerical solutions successfully captured not only the characteristics of the transitional hydrodynamic forces but also some interesting features of the flow field around a berthing ship according to the water depth. In this paper, the consideration is carried out on the approximate formula based on the CFD results, which can estimate hydrodynamic forces especially lateral drag coefficient starting from the rest to the uniform movement.

  • PDF

The Prediction of Hydrodynamic Forces Acting on Ship Hull in Laterally Berthing Maneuver Using CFD

  • Lee, Yun-Sok
    • Journal of Navigation and Port Research
    • /
    • v.27 no.3
    • /
    • pp.253-258
    • /
    • 2003
  • To evaluate the unsteady motion in laterally berthing maneuver, it is necessary to grasp very clearly the magnitude and properties of the hydrodynamic forces acting on ship hull in shallow water. In this study, numerical calculation was made to investigate quantitatively the hydrodynamic force according to the water depth for Wigley model using the CFD (Computational Fluid Dynamics) technique. Comparing the computational results to the experimental ones, the validity of the CFD method was verified. The numerical solutions evaluated the hydrodynamic force with good accuracy, and then captured the features of the flow field around the ship in detail. The transitional lateral force in a state ranging from rest to uniform motion is modeled by using the concept of the circulation.

A Study on the evaluation of the safety of berthing maneuver by the Analytic Hierarchy Process (계측분석법에 의한 선박 접리안 안전성의 평가방안)

  • 구자윤;이철영;우병구;전상엽
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.4
    • /
    • pp.33-47
    • /
    • 1994
  • On developing port system, the performance tests of system in relation to ship maneuver generally consists of the three parts: the channel transit, the manoeuvring in a turning basin and the docking/undocking. The quantifications of risk of an accident has priviously been difficult due to the low occurrence of accidents relative to the number of transits. Additionally, accident statistics could not be related port system because of the large number of factors contributing to the accident. such as human error, equipment failure, visibility, light, traffic. etc. In case of the channel transit, "Relative Risk Factor(RRF)" or "Relative Risk Factor for Meeting Traffic" was proposed as the as the measures derived to quantify the relative risk of accident by M.W.Smith. This factor measure the tracking performance, the turning performance and the passing performance at meeting traffic. On the other hand, the safety of berthing maneuver is not measured with a few evaluating factors as controlled due to complex controllabilites such as steering, engine, side thrusters or tugs. This work, therefore, aims to propose the evaluating measure by the Analytic Hierarchy Process(AHP). Six experimental scenarios were establised under the various environmental conditions as independent variables. In every simulation, the difficulty of maneuver was scored by captain and compared with AHP scores. The results show almost same and from which the weights of eight evaluating factors could be fixed. Additionally, the limit value of relative factor in berthing safety to six scenarios could be estimated to 0.11.e estimated to 0.11.

  • PDF

A Study on Development of Laptop-Based Pilots' Ship-Handling Simulation Software

  • Jeong, Tae-Gwoen;Chen, Chao;Lee, Shin-Geol;Lee, Jeong-Jin;Huh, Yong-Bum
    • Journal of Navigation and Port Research
    • /
    • v.36 no.7
    • /
    • pp.571-575
    • /
    • 2012
  • Berthing and unberthing maneuver is essential work for marine pilots and securing the safety against risks during the maneuver is more important than anything else. Moreover, the maneuvering environment in ports and harbors has changed rapidly and got worse due to development of a new port, the advent of a new type or large-sized ship, and the rapid increase in harbor traffic. As one of measures taken to cope with such changes in the maneuvering environment and for each pilot to improve his own maneuvering ability, this paper developed laptop-based ship-handling simulator which is readily available anytime and anywhere. This paper is to develop a conning display for ship's maneuvering and electronic chart based display widely used nowadays to represent a model ship's movement. The displays were arranged appropriately considering pilot age, easy handling by mouse, using a maximum screen, proper arrangement of rudder, engine, thruster, tug etc and representation of information. Up to now thirteen (13) model ships were developed based on real-ship, whose mathematical model is Japanese MMG & pilots' low speed maneuver.

A study on ship automatic berthing with assistance of auxiliary devices

  • Tran, Van Luong;Im, Nam-Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.199-210
    • /
    • 2012
  • The recent researches on the automatic berthing control problems have used various kinds of tools as a control method such as expert system, fuzzy logic controllers and artificial neural network (ANN). Among them, ANN has proved to be one of the most effective and attractive options. In a marine context, the berthing maneuver is a complicated procedure in which both human experience and intensive control operations are involved. Nowadays, in most cases of berthing operation, auxiliary devices are used to make the schedule safer and faster but none of above researches has taken into account. In this study, ANN is applied to design the controllers for automatic ship berthing using assistant devices such as bow thruster and tug. Using back-propagation algorithm, we trained ANN with set of teaching data to get a minimal error between output values and desired values of four control outputs including rudder, propeller revolution, bow thruster and tug. Then, computer simulations of automatic berthing were carried out to verify the effectiveness of the system. The results of the simulations showed good performance for the proposed berthing control system.

A Study on the Modeling of Transitional Lateral Force Acting on the Berthing Ship by CFD

  • Kong, Gil-Young;Lee, Yun-Sok;Lee, Sang-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1196-1202
    • /
    • 2004
  • To evaluate the unsteady motion in laterally berthing maneuver, it is necessary to estimate clearly the magnitudes and properties of hydrodynamic forces acting on ship hull in shallow water. A numerical simulation has been performed to investigate quantitatively the hydrodynamic force according to water depth for Wigley model using the CFD (Computational Fluid Dynamics) technique. By comparing the computational results with the experimental ones, the validity of the CFD method was verified. The numerical solutions successfully captured some features of transient flow around the berthing ship. The transitional lateral force in a state ranging from the rest to the uniform motion is modeled by using the concept of circulation.

Modeling and controller design of crabbing motion for auto-berthing (선박 자동접안을 위한 순수 횡 이동 모델링 및 제어기 설계)

  • Park, Jong-Yong;Kim, Nakwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.56-64
    • /
    • 2013
  • Crabbing motion is the pure sway motion of a ship without surge velocity. Thus, it can be applied to a berthing operation. Crabbing motion is induced by a peculiar operation method called the push-pull mode. The push-pull mode is induced by using a combination of the main propeller and side thruster. Two propellers generating the same amounts of thrust and rotating in opposite directions produce some yawing moment on a vessel but do not induce longitudinal motion. With the additional operation of side thrusters, the push-pull mode is used to induce a large amount of lateral force. In this paper, three-degree-of-freedom equations of motion such as for the surge, sway, and yaw are constructed for the crabbing motion. Based on these equations of motion, a feedback linearization control method is applied to auto-berthing control for a twin-screw ship with side thrusters. The controller can deal with the nonlinearity of a system, which is present in the berthing maneuver of a twin screw ship. A simulation of the auto-berthing of a ship is performed to validate the performance of the designed controller.

A Study on the Berthing Energy considering the shallow effect of Added mass Acting on a Large Ship (천수역 선체 부가질량을 고려한 대형 선박의 접안에너지 산출에 관한 연구)

  • Lee Yun-Sok;Kim Chol-Seong;Kong Gil-Young;Lee Sang-Min
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.107-112
    • /
    • 2004
  • In order to improve the safety r! ship berthing and the efficiency r! berth operation in the harbour, the berthing energy acting on a ship in berthing maneuver need to be estimated properly. The berthing energy is used as one q the criteria to determine the maximum permissible load of fender as well as important factors to establish the berthing speed and the required power r! tug-beat for pilot and ship operator. In this study, some problems r! present the method of berthing energy are discussed on the basis of the hydrodynamic aspects. Then, series calculations of berthing energy are carried out considering the effect of water depth on added mass and the ship shape for container series from 1,600TEU to 12,000TEU.

  • PDF

A Study on the Evaluation of Berthing Energy of Large-Sized Container Ships with the effect of Shallow Waters (대형 컨테이너선의 천수역 영향을 고려한 접안에너지 산출에 관한 연구)

  • Kim Chol-Seong;Lee Yun-Sok;Lee Chung-Ro;Cho Ik-Soon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.673-678
    • /
    • 2005
  • In order to improve the safety of ship berthing and the efficiency of berth operation in the harbour, the berthing energy acting on a ship in berthing maneuver need to be estimated properly. The berthing energy is used as one of the criteria to determine the maximum permissible load q{ fender as well as important factors to establish the berthing speed and the required power of tug-boat for pilot and ship operator. Some problems of berthing energy are discussed on the basis of the hydrodynamic aspects. Then, series calculations of berthing energy are carried out considering the effect of water depth on added mass and the ship shape for container series from 1,600TEU to 12,000TEU.

A Ship Berthing System Design by Cooperating with Tugboats and Dampers (터그보트와 댐퍼 협조제어를 통한 선박접안시스템 설계에 관한 연구)

  • Tran, Anh-Minh D.;Ji, S.W.;Kim, Y.B.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.7-13
    • /
    • 2014
  • Everyday about 90% of cargos are delivered by ships, and thousands of vessels enter and depart the international container harbors such as Shanghai, Singapore, Hong Kong, Busan, Rotterdam, etc. Maneuvering at harbor is known as the most sophisticated and difficult procedure, because the effectiveness of actuators during low speed berthing is reduced. In this paper, a new berthing method is discussed. Tugboats are combined with damper systems to ensure safe berthing. A mathematical model describing the interaction between unactuated ship, tugboats and damper systems is presented. An optimal controller is designed to maneuver the ship without oscillation and overshoot. MCL (Marine Cybernetics Lab) model ship is used to evaluate the efficiency of the proposed approach through MatLab simulation.