• Title/Summary/Keyword: Berthing and unberthing system

Search Result 6, Processing Time 0.017 seconds

A Study on Development of Sway Velocity Reference Model During Auto-berthing/Unberthing Through Analysis of Ship's Berthing/Unberthing Data (선박의 이/접안 데이터 분석을 통한 자동 이/접안 시 횡방향속도 참조모형 개발에 관한 연구)

  • Kim, Jung-Hyeon;Jo, Hyun-Jae;Kim, Su-Rim;Lee, Jun-Ho;Park, Jong-Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.358-365
    • /
    • 2021
  • Crabbing motion is a pure sway motion with only sway velocity. The ship's crabbing motion is essential for an ideal berthing/unberthing process. The unberthing situation proceeds in sequential order such as crabbing motion section, pivoting section, and outer port section. For the berthing situation, the sequence has a reverse order: the inner port section, pivoting section, and crabbing motion section. In this paper, the berthing/unberthing data of the reference ship, Pukyong National University research ship "NARA", was analyzed to develop a sway velocity reference model. Several constraints were defined to derive the crabbing motion section during berthing/unberthing. The sway velocity reference model for the auto-berthing/unberthing was developed using the estimated sway velocity. A reproduction simulation of the ship was performed to compare the designed reference model and the reference ship data.

Conceptual Design of Network-based Pilot Supporting System (네트워크 기반의 예선사용 지원 시스템 개념 설계)

  • Kim, Yeon-Gyu;Kim, Sun-Young;Park, Se-Kil;Gong, In-Young;Yang, Young-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.21-25
    • /
    • 2009
  • The ship without thrusters and special propulsion system is supported by the tug boats during berthing and unberthing. The orders to tug boats are made by a pilot. If the positions of ship, tug boats and port are displayed in 2D map, it will be helpful to pilots. In this research, a network-based pilot supporting system(NPSS) has been conceptually designed NPSS, necessary for safe and efficient pilot, has two main functions. One is the monitoring of the situation of berthing and unberthing. And the other is the automatic calculation of the tug forces considering environmental conditions. The NPSS is designed on the basis of network system around the harbor. The NPSS will be validated using ship-handling simulator in the future.

Development of Control Algorithm for Ship Berthing and Unberthing Systems Using a Joystick (조이스틱을 이용한 선박의 입출항 및 접이안 시스템의 제어 알고리즘 개발)

  • Hong, Seong-Kuk;Jung, Yun-Ha;Kim, Sun-Young;Won, Moon-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.31 no.5 s.121
    • /
    • pp.325-332
    • /
    • 2007
  • This study develops a control algorithm on berthing/unberthing system using a joystick for ships with thrusters and a rudder. A nonlinear mathematical model for low speed maneuvering of typical container ships is used to develop a MIMO(multi-input multi-output) nonlinear control algorithm for velocity feedback joystick control. Also a virtual HILS(hardware in the loop simulation) software program for berthing/unberthing is developed to test the performance of the nonlinear and a PID control algorithm. The program is developed using LabWindow/CVI, and a user can see current position and desired trajectory of ship in a monitor, then he can control forward and yaw velocities of a ship using a joystick. The simulation results show that the nonlinear mfd the PID controller have superior performance over a simple open loop joystick control algorithm.

A Study on Minimum Number of Ship-handling Simulation Required for Evaluating Vessel's Proximity Measure

  • Jeong, Tae-Gweon;Pan, Bao-Feng
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.689-694
    • /
    • 2014
  • The Korean government has introduced and enforced maritime traffic safety assessment to secure traffic safety since 2010. The maritime traffic safety assessment is needed by law to design a new port or modify an existing one. According to Korea Maritime Safety Act, in the assessment the propriety of marine traffic system consists of the safety of channel transit and berthing/unberthing maneuver, safety of mooring, and safety of marine traffic flow. The safety of channel transit and berthing/unberthing maneuver can be evaluated only by ship-handling simulation. The ship-handling simulation is carried out by sea pilots working with the port concerned. The vessel's proximity measure is an important factor to evaluate traffic safety. The proximity measure is composed of vessel's closest distance to channel boundary and probability of grounding/collision. What is more, the probability of grounding becomes important. According to central limit theorem, a sample has a normal distribution on condition that its size is more than 30. However, more than 30 simulation runs bring about the increase of assessment period and difficulty of employing sea pilots. Therefore this paper is to find out minimum sample size for evaluating vessel's proximity. First sample sets of size of 3, 5, 7, 9 etc. are selected randomly on the basis of normal distribution. And then KS test for goodness of fit and t-test for confidence interval are applied to each sample set. Finally this paper decides the minimum sample size. As a result this paper suggests the minimum sample size of 5, that is, the simulation of more than five times.

The Smart Port Management System Based on Big-data (빅데이터 기반 스마트 항만 운용시스템)

  • Lee, Woo;Kim, Sang-Hyun;Oh, Seung-Hong;Kim, Won-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.167-172
    • /
    • 2022
  • Currently, ship control, tug, and pilot work in import/export ports including Gwangyang Port are operated according to factors such as the order of arrival and departure regardless of the shipping company. Also, even this is done very inefficiently by hand. Therefore, there is an urgent need to develop a system to increase the efficiency of port and ship operation through standardization and digitalization of tasks related to Berthing and unberthing of ships. In this study, we propose a method to increase the efficiency of port and vessel operation by designing a smart port operation system based on big data such as vessel location information, pilotage and tug schedule, arrival/departure operation information, and weather information.

A Relative Importance Evaluation of Bridge Navigational Equipment Using AHP (AHP를 이용한 선교항해장비의 상대적 중요도 평가)

  • Kwon, So-Hyun;Jeong, Woo-Lee;Moon, Serng-Bae
    • Journal of Navigation and Port Research
    • /
    • v.45 no.1
    • /
    • pp.9-15
    • /
    • 2021
  • According to IMO, MASS is defined as a vessel operated at various levels independent of human interference. The safety navigation support service for MASS is designed to improve the safety and efficiency of MASS by developing public services on shore for ship arrivals/departures and for cargo handling. The safety navigation support service consists of a total of six types of services: autonomous operation, berthing/unberthing/mooring, cargo handling and ship arrival/departure service, PSC inspection, condition monitoring, and accident response support services. In order to support accident response service, the relative importance of a bridge navigational equipment was assessed by stratifying the navigation system to provide safe and efficient support services by objective judgment through specific and quantitative methods using AHP, one of decision-making methods used by an expert group. The survey was conducted by dividing the bridge navigational equipment into depth, location, and speed information. As a result of applying the AHP method, the importance of depth, location, and speed information was assessed. The relative importance of each equipment for providing location information was also assessed in order of Radar, DGPS, ECDIS, Gyro compass, Autopilot, and AIS. This was similar to survey results on the utilization of each operator's preference and its impact on marine accidents.