• 제목/요약/키워드: Bernoulli-Euler beam

검색결과 425건 처리시간 0.023초

Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory

  • Nejad, Mohammad Zamani;Hadi, Amin;Omidvari, Arash;Rastgoo, Abbas
    • Structural Engineering and Mechanics
    • /
    • 제67권4호
    • /
    • pp.417-425
    • /
    • 2018
  • The main aim of this paper is to investigate the bending of Euler-Bernouilli nano-beams made of bi-directional functionally graded materials (BDFGMs) using Eringen's non-local elasticity theory in the integral form with compare the differential form. To the best of the researchers' knowledge, in the literature, there is no study carried out into integral form of Eringen's non-local elasticity theory for bending analysis of BDFGM Euler-Bernoulli nano-beams with arbitrary functions. Material properties of nano-beam are assumed to change along the thickness and length directions according to arbitrary function. The approximate analytical solutions to the bending analysis of the BDFG nano-beam are derived by using the Rayleigh-Ritz method. The differential form of Eringen's non-local elasticity theory reveals with increasing size effect parameter, the flexibility of the nano-beam decreases, that this is unreasonable. This problem has been resolved in the integral form of the Eringen's model. For all boundary conditions, it is clearly seen that the integral form of Eringen's model predicts the softening effect of the non-local parameter as expected. Finally, the effects of changes of some important parameters such as material length scale, BDFG index on the values of deflection of nano-beam are studied.

A new approach to modeling the dynamic response of Bernoulli-Euler beam under moving load

  • Maximov, J.T.
    • Coupled systems mechanics
    • /
    • 제3권3호
    • /
    • pp.247-265
    • /
    • 2014
  • This article discusses the dynamic response of Bernoulli-Euler straight beam with angular elastic supports subjected to moving load with variable velocity. A new engineering approach for determination of the dynamic effect from the moving load on the stressed and strained state of the beam has been developed. A dynamic coefficient, a ratio of the dynamic to the static deflection of the beam, has been defined on the base of an infinite geometrical absolutely summable series. Generalization of the R. Willis' equation has been carried out: generalized boundary conditions have been introduced; the generalized elastic curve's equation on the base of infinite trigonometric series method has been obtained; the forces of inertia from normal and Coriolis accelerations and reduced beam mass have been taken into account. The influence of the boundary conditions and kinematic characteristics of the moving load on the dynamic coefficient has been investigated. As a result, the dynamic stressed and strained state has been obtained as a multiplication of the static one with the dynamic coefficient. The developed approach has been compared with a finite element one for a concrete engineering case and thus its authenticity has been proved.

Linearized instability analysis of frame structures under nonconservative loads: Static and dynamic approach

  • Hajdo, Emina;Mejia-Nava, Rosa Adela;Imamovic, Ismar;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • 제10권1호
    • /
    • pp.79-102
    • /
    • 2021
  • In this paper we deal with instability problems of structures under nonconservative loading. It is shown that such class of problems should be analyzed in dynamics framework. Next to analytic solutions, provided for several simple problems, we show how to obtain the numerical solutions to more complex problems in efficient manner by using the finite element method. In particular, the numerical solution is obtained by using a modified Euler-Bernoulli beam finite element that includes the von Karman (virtual) strain in order to capture linearized instabilities (or Euler buckling). We next generalize the numerical solution to instability problems that include shear deformation by using the Timoshenko beam finite element. The proposed numerical beam models are validated against the corresponding analytic solutions.

Effects of deformation of elastic constraints on free vibration characteristics of cantilever Bernoulli-Euler beams

  • Wang, Tong;He, Tao;Li, Hongjing
    • Structural Engineering and Mechanics
    • /
    • 제59권6호
    • /
    • pp.1139-1153
    • /
    • 2016
  • Elastic constraints are usually simplified as "spring forces" exerted on beam ends without considering the "spring deformation". The partial differential equation governing the free vibrations of a cantilever Bernoulli-Euler beam considering the deformation of elastic constraints is firstly established, and is nondimensionalized to obtain two dimensionless factors, $k_v$ and $k_r$, describing the effects of elastically vertical and rotational end constraints, respectively. Then the frequency equation for the above Bernoulli-Euler beam model is derived using the method of separation of variables. A numerical analysis method is proposed to solve the transcendental frequency equation for the continuous change of the frequency with $k_v$ and $k_r$. Then the mode shape functions are given. Finally, effects of $k_v$ and $k_r$ on free vibration characteristics of the beam with different slenderness ratios are calculated and analyzed. The results indicate that the effects of $k_v$ are larger on higher-order free vibration characteristics than on lower-order ones, and the impact strength decreases with slenderness ratio. Under a relatively larger slenderness ratio, the effects of $k_v$ can be neglected for the fundamental frequency characteristics, while cannot for higher-order ones. However, the effects of $k_r$ are large on both higher- and lower-order free vibration characteristics, and cannot be neglected no matter the slenderness ratio is large or small.

Oscillation of Microbeam Structure with Irregular Mass Distribution

  • Kang, Seok-Joo;Kim, Jung-Hwan;Kim, Ji-Hwan
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.528-532
    • /
    • 2013
  • 본 연구에서는, 해석적 모델로 불규칙하게 분포된 질량을 가진 열탄성 댐핑을 포함하는 마이크로빔 구조물을 연구하였다. 마이크로 스케일의 기계적 공명체(mechanical resonator)에 대한 열탄성 댐핑의 중요성은 높은 Q-factor를 설계하는데 고려된다. 본 연구에서의 빔 모델은 Euler-Bernoulli 빔 이론을 기조로 한다. 빔의 고유 진동수를 결정하기 위하여, 에너지 기법이 적용되었다. 또한, 열탄성 댐핑 효과는 열전도 방정식을 사용할으로써 고려되었고, Q-factor가 결정될 수 있었다. 운동방정식의 유도에는 체계적인 무차원화를 수행하였다. 임의의 집중된 질량을 포함하는 열탄성 댐핑을 가진 마이크로빔에 대해 모델의 결과값을 입증하였고 mode shape과 Q-factor를 제시하였다.

  • PDF

단순지지 변화곡선 길이 보의 정확탄성곡선 (Elastica of Simple Variable-Arc-Length Beams)

  • 이병구;박성근
    • 전산구조공학
    • /
    • 제10권4호
    • /
    • pp.177-184
    • /
    • 1997
  • 이 논문은 한개의 집중하중을 받는 단순지지 변화곡선길이 보에 관한 연구이다. Bernoulli-Euler 보 이론에 의하여 정확탄성곡선을 지배하는 미분방정식을 유도하고 이를 수치해석하여 정확탄성곡선의 거동값들을 예측하였다. 미분방정식을 적분하기 위하여 Runge-Kutta method를 이용하고, 단부의 회전각을 산출하기 위하여 Regula-Falsi method를 이용하였다. 본 연구에서의 수치해석 결과들은 문헌값들과 매우 잘 일치하여 본 연구방법의 타당성을 입증하였다. 수치해석의 결과로 정확탄성곡선의 거동값과 하중사이의 관계 및 한계거동값과 하중위치변수 사이의 관계를 각각 그림에 나타내었다. 수치해석의 결과를 분석하여 변화곡선길이 보에서 발생가능한 최대 단부회전각, 최대 처짐 및 최대 휨모멘트를 산정하였다.

  • PDF

Static deflection of nonlocal Euler Bernoulli and Timoshenko beams by Castigliano's theorem

  • Devnath, Indronil;Islam, Mohammad Nazmul;Siddique, Minhaj Uddin Mahmood;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제12권2호
    • /
    • pp.139-150
    • /
    • 2022
  • This paper presents sets of explicit analytical equations that compute the static displacements of nanobeams by adopting the nonlocal elasticity theory of Eringen within the framework of Euler Bernoulli and Timoshenko beam theories. Castigliano's theorem is applied to an equivalent Virtual Local Beam (VLB) made up of linear elastic material to compute the displacements. The first derivative of the complementary energy of the VLB with respect to a virtual point load provides displacements. The displacements of the VLB are assumed equal to those of the nonlocal beam if nonlocal effects are superposed as additional stress resultants on the VLB. The illustrative equations of displacements are relevant to a few types of loadings combined with a few common boundary conditions. Several equations of displacements, thus derived, matched precisely in similar cases with the equations obtained by other analytical methods found in the literature. Furthermore, magnitudes of maximum displacements are also in excellent agreement with those computed by other numerical methods. These validated the superposition of nonlocal effects on the VLB and the accuracy of the derived equations.

후좌굴 변단면 기둥의 기하 비선형 해석 (Geometrical Nonlinear Analyses of Post-buckled Columns with Variable Cross-section)

  • 이병구;김석기;이태은;김권식
    • 대한토목학회논문집
    • /
    • 제29권1A호
    • /
    • pp.53-60
    • /
    • 2009
  • 이 논문은 양단회전 후좌굴 변단면 기둥의 기하 비선형 해석에 관한 연구이다. 기둥의 변단면은 변화폭, 변화깊이, 정방형 변단면으로 채택하였다. Bernoulli-Euler 보 이론을 이용하여 후좌굴 기둥의 정확탄성곡선을 지배하는 미분방정식을 유도하였다. 이 미분방정식은 두 개의 미지수를 가지며 이러한 미분방정식을 풀 수 있는 수치해석 방법을 개발하였다. 후좌굴 기둥의 수치해석 결과로 평형경로, 정확탄성곡선 및 합응력을 산정하였다. 실험을 통하여 후좌굴 거동의 이론을 검증하였다.

선형 변단면 정확탄성곡선형 아치의 자유진동 (Free Vibrations of Elastica Shaped Arches with Linear Taper)

  • 이병구;이태은;김권식
    • 대한토목학회논문집
    • /
    • 제29권6A호
    • /
    • pp.617-624
    • /
    • 2009
  • 이 논문은 선형 변단면 정확탄성곡선형 아치의 자유진동에 관한 연구이다. 정확탄성곡선형 아치의 선형은 Bernoulli-Euler 보 이론을 이용하여 산정하였다. 이러한 선형을 갖는 아치의 자유진동을 지배하는 미분방정식을 유도하고 이를 수치해석하여 무차원 고유진동수를 산출하였다. 수치해석 예에서는 세 종류의 선형 변단면과 두 종류의 지점조건을 채택하였다. 이 연구의 결과를 검증하기 위하여 이 연구와 SAP 2000의 고유진동수를 비교하였다. 수치해석의 결과로 지점조건, 변단면 형상, 세장비 및 단면비가 최저차 4개의 무차원 고유진동수에 미치는 영향을 분석하였다.

Winkler형 지반위에 놓인 수평 곡선보의 자유진동 (Free Vibrations of Horizontally Curved Beams Resting on Winkler-Type Foundations)

  • 오상진;이병구;이인원
    • 소음진동
    • /
    • 제8권3호
    • /
    • pp.524-532
    • /
    • 1998
  • The purpose of this paper is to investigate the free vibrations of horizontally curved beams resting on Winkler-type foundations. Based on the classical Bernoulli-Euler beam theory, the governing differential equations for circular curved beams are derived and solved numerically. Hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered in numerical examples. The free vibration frequencies calculated using the present analysis have been compared with the finite element's results computed by the software ADINA. Numerical results are presented to show the effects on the natural frequencies of curved beams of the horizontal rise to span length ratio, the foundation parameter, and the width ratio of contact area between the beam and foundation.

  • PDF