• Title/Summary/Keyword: Bernoulli-Euler beam

Search Result 425, Processing Time 0.019 seconds

Investigation of the mechanical behavior of functionally graded sandwich thick beams

  • Mouaici, Fethi;Bouadi, Abed;Bendaida, Mohamed;Draiche, Kada;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed;Ghazwani, Mofareh Hassan;Alnujaie, Ali
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.721-740
    • /
    • 2022
  • In this paper, an accurate kinematic model has been developed to study the mechanical response of functionally graded (FG) sandwich beams, mainly covering the bending, buckling and free vibration problems. The studied structure with homogeneous hardcore and softcore is considered to be simply supported in the edges. The present model uses a new refined shear deformation beam theory (RSDBT) in which the displacement field is improved over the other existing high-order shear deformation beam theories (HSDBTs). The present model provides good accuracy and considers a nonlinear transverse shear deformation shape function, since it is constructed with only two unknown variables as the Euler-Bernoulli beam theory but complies with the shear stress-free boundary conditions on the upper and lower surfaces of the beam without employing shear correction factors. The sandwich beams are composed of two FG skins and a homogeneous core wherein the material properties of the skins are assumed to vary gradually and continuously in the thickness direction according to the power-law distribution of volume fraction of the constituents. The governing equations are drawn by implementing Hamilton's principle and solved by means of the Navier's technique. Numerical computations in the non-dimensional terms of transverse displacement, stresses, critical buckling load and natural frequencies obtained by using the proposed model are compared with those predicted by other beam theories to confirm the performance of the proposed theory and to verify the accuracy of the kinematic model.

Improvement of Euler-Bernoulli Beam Theory for Free Vibration and Buckling Analyses via Saint-Venant's Principle (생브낭 원리를 이용한 고전 보 이론의 고유진동수 및 좌굴하중 예측 개선)

  • Jeong, Yong-Min;Kim, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.381-387
    • /
    • 2016
  • In this paper, the methodology applied to the improvement of stress analyses is extended to free vibration and buckling analyses. The essence of the methodology is the Saint-Venant's principle that is applicable to beam and plate models. The principle allows one to dimensionally reduce three-dimensional elasticity problems. Thus the methodology can be employed to vibration and buckling as well as stress analysis. First, the principle is briefly revisited, and then the formations of classical beam theories are presented. To improve the predictions, the perturbed terms (unknowns) are introduced together with the warping functions that are calculated by stress equilibrium equations. The unknowns are then calculated by applying the equivalence of stress resultants (i.e., Saint-Venant's principle). As numerical examples, cantilever and simply supported beams are analytically solved. The results obtained are compared with those of the classical beam theories. It is shown that the methodology can be used to improve the predictions without introducing shear correction factors.

Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory

  • Kaghazian, Abbas;Hajnayeb, Ali;Foruzande, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.617-624
    • /
    • 2017
  • Piezoelectric nanobeams are used in several nano electromechanical systems. The first step in designing these systems is conducting a vibration analysis. In this research, the free vibration of a piezoelectric nanobeam is analyzed by using the nonlocal elasticity theory. The nanobeam is modeled based on Euler-Bernoulli beam theory. Hamilton's principle is used to derive the equations of motion and also the boundary conditions of the system. The obtained equations of motion are solved by using both Galerkin and the Differential Quadrature (DQ) methods. The clamped-clamped and cantilever boundary conditions are analyzed and the effects of the applied voltage and nonlocal parameter on the natural frequencies and mode shapes are studied. The results show the success of Galerkin method in determining the natural frequencies. The results also show the influence of the nonlocal parameter on the natural frequencies. Increasing a positive voltage decreases the natural frequencies, while increasing a negative voltage increases them. It is also concluded that for the clamped parts of the beam and also other parts that encounter higher values of stress during free vibrations of the beam, anti-nodes in voltage mode shapes are observed. On the contrary, in the parts of the beam that the values of the induced stress are low, the values of the amplitude of the voltage mode shape are not significant. The obtained results and especially the mode shapes can be used in future studies on the forced vibrations of piezoelectric nanobeams based on Galerkin method.

Experimental Investigations of Relationships between Resonance Frequencies and Elastic Moduli of Composite Materials by Impulse Excitation Method (Impulse Excitation Method에 의한 복합재료의 공진 주파수와 탄성계수 관계에 대한 실험적 고찰)

  • Kim, Hyeong-Sam;Lee, Jae-Hyeok;Lee, Dong-Sik;Park, Se-Man
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.843-848
    • /
    • 1998
  • The Usages of composite materials have been steadily on the rise in the industries of automobiles, air crafts, shipbuilding and other structures for transportations. Commonly required in those industries are light weight and high strength of the structures. Consequently, serious efforts in research have been focused on searching for light materials and on developments and characterizations of advanced substitutes including various kinds of composite materials. In this investigation, transversely isotropic composite materials are chosen and formed into two kinds of beams; Euler-Bernoulli beam(thin team) and Timoshenko beam(thick beam) for determinations of elastic constants. As an experimental technique Impulse Excitation Method is utilized to measure resonance frequencies of the beams of the composite materials in vibration tests. Elastic constants are evaluated from measured resonance frequencies for the two types of beams to observe and establish possible existence of effects of rotary inertia and shear deformations.

  • PDF

Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories

  • Shaopeng Song;Tao Zhang;Zhiewn Zhui
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.487-502
    • /
    • 2023
  • In the realm of nanotechnology, the nonlocal strain gradient theory takes center stage as it scrutinizes the behavior of spinning cantilever nanobeams and nanotubes, pivotal components supporting various mechanical movements in sport structures. The dynamics of these structures have sparked debates within the scientific community, with some contending that nonlocal cantilever models fail to predict dynamic softening, while others propose that they can indeed exhibit stiffness softening characteristics. To address these disparities, this paper investigates the dynamic response of a nonlocal cantilever cylindrical beam under the influence of external discontinuous dynamic loads. The study employs four distinct models: the Euler-Bernoulli beam model, Timoshenko beam model, higher-order beam model, and a novel higher-order tube model. These models account for the effects of functionally graded materials (FGMs) in the radial tube direction, giving rise to nanotubes with varying properties. The Hamilton principle is employed to formulate the governing differential equations and precise boundary conditions. These equations are subsequently solved using the generalized differential quadrature element technique (GDQEM). This research not only advances our understanding of the dynamic behavior of nanotubes but also reveals the intriguing phenomena of both hardening and softening in the nonlocal parameter within cantilever nanostructures. Moreover, the findings hold promise for practical applications, including drug delivery, where the controlled vibrations of nanotubes can enhance the precision and efficiency of medication transport within the human body. By exploring the multifaceted characteristics of nanotubes, this study not only contributes to the design and manufacturing of rotating nanostructures but also offers insights into their potential role in revolutionizing drug delivery systems.

Stability Analysis of Beck's Column with a Tip Mass Restrained by a Spring (스프링으로 지지된 자유단에 집중질량을 갖는 Beck 기둥의 안정성 해석)

  • Li, Guangfan;Oh, Sang-Jin;Kim, Gwon-Sik;Lee, Byoung-Koo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1287-1294
    • /
    • 2005
  • The purpose of this paper is to investigate free vibrations and critical loads of the Beck's columns with a tip spring, which carry a tip mass. The ordinary differential equation governing free vibrations of Beck's column subjected to a follower force is derived based on the Bernoulli-Euler beam theory Both the divergence and flutter critical loads are calculated from the load-frequency corves that are obtained by solving the differential equation numerically. The critical loads are presented in the figures as functions of various non-dimensional system parameters such as the subtangential parameter, mass ratio and spring parameter.

Investigation of dynamic response of "bridge girder-telpher-load" crane system due to telpher motion

  • Maximov, Jordan T.;Dunchev, Vladimir P.
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.485-507
    • /
    • 2018
  • The moving load causes the occurrence of vibrations in civil engineering structures such as bridges, railway lines, bridge cranes and others. A novel engineering method for separation of the variables in the differential equation of the elastic line of Bernoulli-Euler beam has been developed. The method can be utilized in engineering structures, leading to "a beam under moving load model" with generalized boundary conditions. This method has been implemented for analytical study of the dynamic response of the metal structure of a single girder bridge crane due to the telpher movement along the bridge girder. The modeled system includes: a crane bridge girder; a telpher, moving with a constant horizontal velocity; a load, elastically fixed to the telpher. The forced vibrations with their own frequencies and with a forced frequency, due to the telpher movement, have been analyzed. The loading resulting from the telpher uniform movement along the bridge girder is cyclical, which is a prerequisite for nucleation and propagation of fatigue cracks. The concept of "dynamic coefficient" has been introduced, which is defined as a ratio of the dynamic deflection of the bridge girder due to forced vibrations, to the static one. This ratio has been compared with the known from the literature empirical dynamic coefficient, which is due to the telpher track unevenness. The introduced dynamic coefficient shows larger values and has to be taken into account for engineering calculations of the bridge crane metal structure. In order to verify the degree of approximation, the obtained results have been compared with FEM outcomes. An additional comparison has been made with the exact solution, proposed by Timoshenko, for the case of simply supported beam subjected to a moving force. The comparisons show a good agreement.

A comparative study for beams on elastic foundation models to analysis of mode-I delamination in DCB specimens

  • Shokrieh, Mahmood Mehrdad;Heidari-Rarani, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.149-162
    • /
    • 2011
  • The aim of this research is a comprehensive review and evaluation of beam theories resting on elastic foundations that used to model mode-I delamination in multidirectional laminated composite by DCB specimen. A compliance based approach is used to calculate critical strain energy release rate (SERR). Two well-known beam theories, i.e. Euler-Bernoulli (EB) and Timoshenko beams (TB), on Winkler and Pasternak elastic foundations (WEF and PEF) are considered. In each case, a closed-form solution is presented for compliance versus crack length, effective material properties and geometrical dimensions. Effective flexural modulus ($E_{fx}$) and out-of-plane extensional stiffness ($E_z$) are used in all models instead of transversely isotropic assumption in composite laminates. Eventually, the analytical solutions are compared with experimental results available in the literature for unidirectional ($[0^{\circ}]_6$) and antisymmetric angle-ply ($[{\pm}30^{\circ}]_5$, and $[{\pm}45^{\circ}]_5$) lay-ups. TB on WEF is a simple model that predicts more accurate results for compliance and SERR in unidirectional laminates in comparison to other models. TB on PEF, in accordance with Williams (1989) assumptions, is too stiff for unidirectional DCB specimens, whereas in angle-ply DCB specimens it gives more reliable results. That it shows the effects of transverse shear deformation and root rotation on SERR value in composite DCB specimens.

A computational shear displacement model for vibrational analysis of functionally graded beams with porosities

  • Atmane, Hassen Ait;Tounsi, Abdelouahed;Bernard, Fabrice;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.369-384
    • /
    • 2015
  • This work presents a free vibration analysis of functionally graded metal-ceramic (FG) beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. For this purpose, a simple displacement field based on higher order shear deformation theory is implemented. The proposed theory is based on the assumption that the transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The most interesting feature of this theory is that it accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the beam without using shear correction factors. In addition, it has strong similarities with Euler-Bernoulli beam theory in some aspects such as equations of motion, boundary conditions, and stress resultant expressions. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. By employing the Hamilton's principle, governing equations of motion for coupled axial-shear-flexural response are determined. The validity of the present theory is investigated by comparing some of the present results with those of the first-order and the other higher-order theories reported in the literature. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.

Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams

  • Abdelhak Mesbah;Zakaria Belabed;Khaled Amara;Abdelouahed Tounsi;Abdelmoumen A. Bousahla;Fouad Bourada
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.291-309
    • /
    • 2023
  • This paper addresses the finite element modeling of functionally graded porous (FGP) beams for free vibration and buckling behaviour cases. The formulated finite element is based on simple and efficient higher order shear deformation theory. The key feature of this formulation is that it deals with Euler-Bernoulli beam theory with only three unknowns without requiring any shear correction factor. In fact, the presented two-noded beam element has three degrees of freedom per node, and the discrete model guarantees the interelement continuity by using both C0 and C1 continuities for the displacement field and its first derivative shape functions, respectively. The weak form of the governing equations is obtained from the Hamilton principle of FGP beams to generate the elementary stiffness, geometric, and mass matrices. By deploying the isoparametric coordinate system, the derived elementary matrices are computed using the Gauss quadrature rule. To overcome the shear-locking phenomenon, the reduced integration technique is used for the shear strain energy. Furthermore, the effect of porosity distribution patterns on the free vibration and buckling behaviours of porous functionally graded beams in various parameters is investigated. The obtained results extend and improve those predicted previously by alternative existing theories, in which significant parameters such as material distribution, geometrical configuration, boundary conditions, and porosity distributions are considered and discussed in detailed numerical comparisons. Determining the impacts of these parameters on natural frequencies and critical buckling loads play an essential role in the manufacturing process of such materials and their related mechanical modeling in aerospace, nuclear, civil, and other structures.