• Title/Summary/Keyword: Bernese

Search Result 31, Processing Time 0.024 seconds

Development of Network-Based Online GPS Baseline Processing System (네트워크 기반 온라인 GPS 기선해석 시스템 개발)

  • Kim, Su-Kyung;Bae, Tae-Suk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.2
    • /
    • pp.138-146
    • /
    • 2011
  • With the increased use of GPS in the field of various applications including surveying, the request for fast and precise positional information has increased. Several countries such as USA, Canada, and Australia have already been operating Internet-based automatic GPS data analysis system using e-mail and FTP. Expanding GPS market, it is necessary to establish automatic GPS baseline processing system that is accessible via Internet. The system developed in this study is operating on the web, and it allows the users to access easily regardless of time and place. The main processing engines are Bernese V5.0 and PAGES. They process user data with three GPS CORS(Continuously Operating Reference Station), and then send the report to the users through e-mail. This system allows users to process high accurate GPS data easily. It is expected that this system will be used for various GPS applications such as monitoring large-scale structures and providing spatial information services in private sector.

Precise Orbit Determination of GPS using Bernese GPS Software

  • Baek, Jeong-Ho;Cho, Sung-Ki;Jo, Jung-Hyun;Park, Jong-Uk
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.267-270
    • /
    • 2006
  • The International GNSS Service (IGS) has managed the global GNSS network and provided the highest quality GNSS data and products, which are GPS ephemerides, clock information and Earth orientation parameter, as the standard for GNSS. An important part of its works is to provide the precise orbits of GPS satellites. GPS satellites send their orbit information (broadcast ephemerides) to users and their accuracies are approximately 1.6 meters level, but those accuracies are not sufficient for the high precise applications which require millimeters precision. The current accuracies of the IGS final orbits are within 5 centimeters level and they are used for Earth science, meteorology, space science, and they are made by the IGS analysis centers and combined by the IGS analysis center coordinator. The techniques making the products are very difficult and require the high technology. The Korea Astronomy and Space Science Institute (KASI) studies to make the IGS products. In this study, we developed our own processing strategy and made GPS ephemerides using Bernese GPS software Ver. 5.0. We used the broadcast ephemerides as the initial orbits and processed the globally distributed 150 IGS stations. The result shows about 6 to 8 centimeters in root-mean-squares related to IGS final orbits in each day during a week. We expect that this study can contribute to secure our own high technology.

  • PDF

VLBI TRF Combination Using GNSS Software

  • Kwak, Younghee;Cho, Jungho
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.315-320
    • /
    • 2013
  • Space geodetic techniques can be used to obtain precise shape and rotation information of the Earth. To achieve this, the representative combination solution of each space geodetic technique has to be produced, and then those solutions need to be combined. In this study, the representative combination solution of very long baseline interferometry (VLBI), which is one of the space geodetic techniques, was produced, and the variations in the position coordinate of each station during 7 years were analyzed. Products from five analysis centers of the International VLBI Service for Geodesy and Astrometry (IVS) were used as the input data, and Bernese 5.0, which is the global navigation satellite system (GNSS) data processing software, was used. The analysis of the coordinate time series for the 43 VLBI stations indicated that the latitude component error was about 15.6 mm, the longitude component error was about 37.7 mm, and the height component error was about 30.9 mm, with respect to the reference frame, International Terrestrial Reference Frame 2008 (ITRF2008). The velocity vector of the 42 stations excluding the YEBES station showed a magnitude difference of 7.3 mm/yr (30.2%) and a direction difference of $13.8^{\circ}$ (3.8%), with respect to ITRF2008. Among these, the 10 stations in Europe showed a magnitude difference of 7.8 mm/yr (30.3%) and a direction difference of $3.7^{\circ}$ (1.0%), while the 14 stations in North America showed a magnitude difference of 2.7 mm/yr (15.8%) and a direction difference of $10.3^{\circ}$ (2.9%).

A Study on the Analysis of Crust Deformation on the Korean Peninsula after the Tohoku Earthquake using GNSS Observation (GNSS를 이용한 동일본대지진 이후 한반도 지각변동 해석 연구)

  • Kim, Hee Un;Hwang, Eui-Hong;Lee, HaSeong;Lee, Duk Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.689-696
    • /
    • 2020
  • It is known through prior research that the crust of the Korean Peninsula moves southeast at an annual average of 3 cm/year. The 2011 Great East Japan Earthquake caused a great change in the crust of the Korean Peninsula. Since then, the frequency of earthquakes has increased on the Korean Peninsula. Therefore, by using NGII and IGS GNSS observation data of the recent 15 years, to analyze the trends of changes in the deformation of the Korean Peninsula before and after the outbreak of the Great East Japan Earthquake. Data processing utilized Bernese Software V5.2, a widely used scientific and technical software around the world. As a result, the global movement of the Korean peninsula differed by about 4mm and the direction of movement by about 10° compared to before the Great East Japan Earthquake. As for the internal distortion of the Korean Peninsula, the East-West expansion of the Korean peninsula's crust was observed during the Great East Japan Earthquake, but it is believed that it has not fully returned to the level before the Great East Japan Earthquake.

Determination of Absolute Coordinates of Cadastral Satellite Station using Gipsy-Oasis II (Gipsy-Oasis II를 이용한 지적위성기준점의 절대 좌표 결정)

  • Song, Dong Seob;Yun, Hong Sic
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.317-324
    • /
    • 2006
  • This study deals with the precise GPS data processing refer to ITRF2000 through the calculation of absolute coordinates of cadastral satellite station which were established by purpose of cadastral surveying. We used the Gipsy-Oasis II software developed Jet Propulsion Laboratory to estimate daily position of GPS stations with orbital and atmospheric parameters. Especially, we carried out ionospheric delay, tropospheric delay, data existence whether or not and quality control check of observation data during pre-processing. The standard deviation of absolute coordinates was determined better than ${\pm}4mm$ from GPS precise analysis. The RMSE of difference between the result of this study and existing result by using Bernese s/w shows ${\Delta}X={\pm}0.079m$, ${\Delta}Y={\pm}0.019m$ and ${\Delta}Z={\pm}0.031m$.

IVS통합분석센터 운영전략

  • Gwak, Yeong-Hui;Jo, Jeong-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.41.1-41.1
    • /
    • 2009
  • 한국천문연구원은 2008년 10월 IVS(International VLBI Service for Geodesy and Astrometry) 통합분석센터로 선정되어 현재 정규운영을 위한 준비 작업을 진행하고 있다. IVS 통합분석센터는 개별 IVS 분석센터에서 산출한 산출물을 통합하여 개별 분석 센터 산출물의 품질을 검증하고 국제 지구기준좌표계 구성에 필요한 입력 데이터를 제공하는 기능을 한다. 이 연구에서는 IVS통합분석센터로서의 역할과 향후 IVS 통합분석센터의 운영계획에 대해 초점을 맞춘다. VLBI 산출물 통합을 위해 다른 IVS 통합분석센터와 차별화하여 GPS 자료처리 소프트웨어 Bernese 5.0에서 제공하는 정규방정식 단계 통합 프로그램인 ADDNEQ2를 활용할 계획이다. 이와 관련하여 VLBI 데이터 처리에 적합하도록 ADDNEQ2를 수정 보완한 사항과 수정된 ADDNEQ2로 통합한 예비 결과에 대해 집중적으로 논의한다. 이와 더불어 산출한 예비 결과를 각 개별 IVS 분석센터 산출물을 바탕으로 비교 검증한 결과를 소개한다.

  • PDF

한국지질자원연구원 GPS 상시관측망 정밀좌표 계산

  • Lee, Yeong-Cheol;Im, Mu-Taek;Park, Yeong-Su;Im, Hyeong-Rae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.605-607
    • /
    • 2006
  • 한국지질자원연구원은 1990년대 초반부터 순차적으로 강원도 경주, 양산, 삼척, 홍성, 정선, 지리산 등 6 개 지역에 GPS위성들이 발사하는 자료를 연속적으로 수신하여 자동관리할 수 있는 GPS 상시관측소를 설치하고 GPS위성자료를 축적해 왔다. 이에 한국지질자원연구원은 축적된 자료 중 2005년과 2006년에 걸친 자료를 이용하여 정밀좌표를 계산하였다. 자료처리에는 스위스 Bern대학이 개발한 Bernese4.0을 이용하였다. 이렇게 계산된 위 6 개 GPS상시관측소의 정밀 좌표를 이용함으로써 GPS위성자료를 사용하는 하는 지구과학 분야 및 측량 분야의 발전에 기여할 것이다.

  • PDF

GPS 관측을 이용한 칠레지진(2010.2.27)에 의한 주변지역 변위발생분석

  • Baek, Jeong-Ho;Jo, Jeong-Ho;Park, Pil-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.37.2-37.2
    • /
    • 2010
  • GPS 관측자료를 이용하여 최근 발생한 칠레지진에 의한 지각의 변위를 결정하고 결과를 분석하였다. 고정밀 측지용 이중주파수 GPS 수신기 및 안테나가 장착된 관측소의 자료를 처리하면 수mm 정밀도로 관측소의 위치를 결정할 수 있으며, 수년간의 관측자료가 누적되면 연간 mm급의 움직임도 관측할 수 있어 판운동이나 지진, 단층연구 등에 널리 활용되고 있다. 이번 2010년 2월 27일 칠레 중서부에서 발생한 지진은 인근 지역을 30 cm 이상 움직였을 것으로 예상되며 8.8의 대형 지진규모와 많은 인명 및 재산피해를 유발시켜 학계뿐만 아니라 일반 언론에도 많은 주목을 받고 있다. 이 연구에서는 지진이 발생한 지역 부근에 위치한 국제 GPS 기준망의 GPS 관측자료를 처리하여 지진 발생 전후의 변위를 산출하고 분석하였다. 자료처리를 위해 Bernese GPS S/W 5.0을 사용하였고 24시간단위 자료에 대해 이중차분방법과 단독정밀측위방법을 사용하였다. 또한 지진이 발생 도중의 변위를 관찰하기 위해 이동측위방법을 사용하여 30초마다의 움직임을 계산하였다.

  • PDF

A Permanent GPS Ground Network for Atmospheric Research on Taiwan

  • Liou, Yuei-An;Wang, Chuan-Sheng
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1024-1026
    • /
    • 2003
  • The purpose of establishing GPS networks of continuously operating reference stations (CORS) is aimed to assist land surveying or crustal deformation in the early stage. However, with a fast evolving and improving path the GPS technique has been extended to accurately measure atmospheric precip itable water vapor as a core objective of many projects developed in many countries and regions such as the SuomiNet (U.S., UNAVCO), COST716 (European, COST), GEONET (Japan, GSI), ...etc. In this paper, we present the current progress of the being-set-up GPS network in Taiwan whose atmospheric profile observations mainly count on the traditional radiosonde soundings as typically seen in any other part of the world. The GPS data collected from the Taiwan dense GPS network primarily supported by Central Weather Bureau are processed using the Bernese software version 4.2. Precipitable water vapor is then derived with the auxiliary surface meteorological measurements. Time series of precipitable water are examined and analyzed. A focus on the extreme weather cases is shown as an example.

  • PDF

Analysis of Crustal Deformation on the Korea Peninsula after the 2011 Tohoku Earthquake (한반도 지각의 2011 도호쿠 대지진 영향 분석)

  • Kim, Su-Kyung;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.87-96
    • /
    • 2012
  • The U.S. Geological Survey (USGS) announced that an earthquake of 9.0 magnitude had occurred near the east coast of Japan on March 11, 2011, resulting in a displacement of the crust of about 2.4 meters. The Korean peninsula is located on the Eurasian tectonic plate that stretches out to Japan; therefore, there is a high possibility of being affected by an earthquake. The Korean GPS CORS network operated by the National Geographic Information Institute (NGII) was processed for ten days before and after the earthquake. Both static and kinematic baseline processing were tested for the determination of crustal deformation. The static baseline processing was performed in two scenarios: 1) fixing three IGS stations in China, Mongolia and Russia; 2) fixing SUWN, one of the CORS networks in Korea, in order to effectively verify crustal deformation. All data processing was carried out using Bernese V5.0. The test results show that most of the parts of the Korean peninsula have moved to the east, ranging 1.2 to 5.6 cm, compared to the final solution of the day before the earthquake. The stations, such as DOKD and ULLE that are established on the islands closer to the epicenter, have clearly moved the largest amounts. Furthermore, the station CHJU, located on the southwestern part of Korea, presents relatively small changes. The relative positioning between CORS confirms the fact that there were internal distortions of the Korean peninsula to some extent. In addition, the 30-second interval kinematic processing of CORS data gives an indication of earthquake signals with some delays depending on the distance from the epicenter.