• 제목/요약/키워드: Benzo[d]oxazole

검색결과 2건 처리시간 0.014초

An Efficient Solid-phase Parallel Synthesis of 2-Amino and 2-Amidobenzo[d]oxazole Derivatives via Cyclization Reactions of 2-Hydroxyphenylthiourea Resin

  • Jung, Se-Lin;Kim, Seul-Gi;Lee, Gee-Hyung;Gong, Young-Dae
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권12호
    • /
    • pp.4109-4116
    • /
    • 2012
  • An efficient solid-phase methodology has been developed for the synthesis of 2-amino and 2-amidobenzo[d]-oxazole derivatives. The key step in this procedure involves the preparation of polymer-bound 2-aminobenzo-[d]oxazole resins 4 by cyclization reaction of 2-hydroxy-phenylthiourea resin 3. The resin-bound 2-hydroxyphenylthiourea 3 is produced by the addition of 2-aminophenol to the isothiocyanate-terminated resin 2 and serve as a key intermediate for the linker resin. This core skeleton 2-aminobenzo[d]oxazole resin 4 undergoes functionalization reaction with various electrophiles, such as alkylhalides and acid chlorides to generate 2-amino and 2-amidobenzo[d]oxazole resins 5 and 6 respectively. Finally, 2-amino and 2-amidobenzo[d]oxazole derivatives 7 and 8 are then generated in good yields and purities by cleavage of the respective resins 5 and 6 under trifluoroacetic acid (TFA) in dichloromethane ($CH_2Cl_2$).

A Novel Inhibitor of Translation Initiation Factor eIF5B in Saccharomyces cerevisiae

  • Ah-Ra Goh;Yi-Na Kim;Jae Hyeun Oh;Sang Ki Choi
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권6호
    • /
    • pp.1348-1355
    • /
    • 2024
  • The eukaryotic translation initiation factor eIF5B is a bacterial IF2 ortholog that plays an important role in ribosome joining and stabilization of the initiator tRNA on the AUG start codon during the initiation of translation. We identified the fluorophenyl oxazole derivative 2,2-dibromo-1-(2-(4-fluorophenyl)benzo[d]oxazol-5-yl)ethanone quinolinol as an inhibitor of fungal protein synthesis using an in vitro translation assay in a fungal system. Mutants resistant to this compound were isolated in Saccharomyces cerevisiae and were demonstrated to contain amino acid substitutions in eIF5B that conferred the resistance. These results suggest that eIF5B is a target of potential antifungal compound and that mutation of eIF5B can confer resistance. Subsequent identification of 16 other mutants revealed that primary mutations clustered mainly on domain 2 of eIF5B and secondarily mainly on domain 4. Domain 2 has been implicated in the interaction with the small ribosomal subunit during initiation of translation. The tested translation inhibitor could act by weakening the functional contact between eIF5B and the ribosome complex. This data provides the basis for the development of a new family of antifungals.