• Title/Summary/Keyword: Benzo[a]pyrene-DNA formation

Search Result 17, Processing Time 0.027 seconds

Effects of Ginseng Saponin on DNA Strand Breaks and Replication Inhibition by Benzo(a)Pyrene in CHO-Kl Cells (Benzo(a)Pyrene 유발 DNA 상해 및 복제 억제에 미치는 인삼사포닌의 영향)

  • Park, Jin-Kyu;Park, Ki-Hyun
    • Journal of Ginseng Research
    • /
    • v.16 no.3
    • /
    • pp.210-216
    • /
    • 1992
  • The effect of saponin extracted from Panax grneng CA Meyer on DNA repair and replicative DNA synthesis were examined in CHO-Kl cells cotreated with benzo(a)pyrene and rat liver S-15 fraction. The DNA strand breaks inititated by benzo(a)pyrene metabolites were measured by alkaline election technique. The addition of ginseng saponin to the culture media resulted in decrease of benzo(a)pyrene-induced DNA strand breaks, and restored the suppressed-semiconservative-DNA-synthesis by the carcinogen. DNA repair synthesis in the damaged cells was also elevated by the ginseng treatment when the repairing activites were measured for the (3H)-thymidine incorporation into the carcinogen damaged cellular DNk Comparative analysis of DNA-adduces of benzo(a)pyrene metabortes in microsomes suggested that ginseng saponin treatment in rats reduced the formation of electrophilic metabolites of benzo (a)-pyrene in the rat liver microsomes.

  • PDF

Structural Damage of DNA by 6-Sulfooxymethyl Benzo(a)pyrene

  • Cho, Young-Sik;Chung, An-Sik
    • BMB Reports
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 1995
  • The effect of 6-sulfooxymethyl benzo(a)pyrene (SMBP) on conformational changes of calf thymus DNA was investigated. As SMBP is a strong electrophile, the covalent binding of SMBP to DNA should distort three dimensional conformation of DNA at the binding sites. A formaldehyde-unwinding methods were used to determine the rate of DNA denaturation. The increase in absorbance at 251nm was detected by addition of formaldehyde following treatment with SMBP. SMBP changed supercoiled DNA to relaxed and linear DNA as determined by electrophoresis, which was similar to the change in DNA due to in vitro treatment with benzo(a) pyrene diol epoxide. Treatment with SMBP completely denatured DNA under alkaline conditions. However, DNA was nicked or partially denatured under neutral condition. The absorption band of DNA was increased by the treatment with SMBP in V79 cells, which may be explained by the formation of stabilized SMBP-DNA adduct.

  • PDF

Optimization of the 32P-postlabeling Assay for Detecting Benzo(a)pyrene-induced DNA Adduct Formation in Zacco platypus

  • Lee, Jin Wuk;Lee, Sung Kyu
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.1
    • /
    • pp.55-62
    • /
    • 2014
  • Objectives: $^{32}P$-postlabeling assay is the most sensitive method of detecting DNA adduct formation. However, it is limited by a low sample throughput and use of radioisotopes (RI). In this study, we modified it to minimize these limitations and applied it to Z. platypus exposed to Benzo(a)pyrene (BaP) in order to investigate DNA adduct formation (effect biomarker for pollutants) in Z. platypus for assessing risk of waterborne BaP exposure. Methods: DNA hydrolysis was performed only with Micrococcal nuclease (MNase), RI reduction test was performed and the overlapping steps between thin layer chromatography (TLC) and radioisotope high-performance liquid chromatography (RI-HPLC) were omitted. The application of a modified method to Z. platypus exposed to BaP was performed. Results: The results revealed that the amount of RIs used can be reduced roughly 10-fold. Because the analysis time was shortened by 8.5 hours, the sample throughput per hour was increased compared with the previous method. The results of applying modified $^{32}P$-postlabeling assay to Z. platypus, DNA adduct formation in Z. platypus showed dose-dependency with the BaP concentration. Only BPDE-dGMP was detected as a DNA adduct. Conclusion: These results demonstrate that the modified $^{32}P$-postlabeling assay is a suitable method for detecting DNA adduct formation in Z. platypus exposed to waterborne BaP and will be useful in risk assessment of carcinogenic effect in aquatic environment due to BaP.

Studies on the Nuclei Adduction and Expression of c-myc Gene by Benzo(a)pyrene and Doxorubicin in Human NC-37 Cells (사람 NC-37 세포에서 Benzo(a)pyrene과 Doxorubicin에 의한 Nuclei내전과 c-myc 유전자의 발현에 대한 연구)

  • 김호찬;정인철;조무연
    • Journal of Life Science
    • /
    • v.8 no.4
    • /
    • pp.400-409
    • /
    • 1998
  • Formation of adduct was studied in benzo(a)pyrene(BP)- and doxorubicin(Dx)-treated human NC-37 cells and isolated nuclei. Major adducts formed were determined by fluorescence absorption spectrophotometery and DNA-lin-ked protein assay. When isolated nuclei were exposed to carcinogens BP and DMBA, and anticancer drugs m-AMSA, ellipticine and Dx, varying degrees of adduct formation occured between DNA-protein complex and these drugs. When the mixture was centrifuged 1.7 M sucrose solution, binding BP and DMBA appeared to be similar between the sediment and the supernatant. When the sediment was centrifuged again with 0.35% polymin-P, the amount of BP bound was 2-fold greater in the protein(1077$\pm$55cpm) than in DNA fraction (470$\pm$20cpm), whereas that of DMBA was 1.6-fold greater in the DNA than in protein fraction. In the case of m-AMSA, ellipticine and Dx, the amount of binding was slightly greater in supernatant than in sediment in centrifugation with 1.7 M sucrose, and more than 3 times greater in the DNA- than in protein- fraction in centrifugation with 0.35% polymin P. DNA fractions which associated with a subset of nonhistone chromosomal protein were isolated from NC-37 cells exposed to $^{3}$H-BP and $^{14}$C-Dx. They were separated into two distince components DNA-S and DNA-P by centrifugation with 2M Nacl chromatin extraction. The results indicated that the amount of $^{3}$H-BP bound was 6.0-fold greater in DNA-P as compared with DNA-S, while that of $^{14}$C-Dx binding appreaed to be 6.2-fold greater in DNA-S than in DNA-P fraction. When $^{3}$H-BP binding wasdetermined in the presence of cold Dx, the amount of binding was reduced only in the DNA-P fraction, indicating that the interaction between DNA and protein is decreased. Gene expression by these drugs, BP treated cells were increased to compare with nomal cells but reduced by treatment with BP-Dx. These results suggest that the protein moiety which tightly bound to DNA-P fraction may play an important role in the regulation of gene expression.

  • PDF

Effect of Cnidium officinale Makino Aqua-acupuncture Solution on Carcinogen-induced Carcinogenesis in In vitro (In vitro에서 발암물질에 의한 발암진행에 미치는 천궁약침액의 영향)

  • Han Sang-Hoon;No Dong-Il;Lee Ki-Tek;Shon Yun-Hee;Baek Tae-Seon;Nam Kyung-Soo;Lim Jong-Kook
    • Korean Journal of Acupuncture
    • /
    • v.19 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • The effects of Cnidium officinale Makino aqua-acupuncture solution (COMAS) and Cnidium officinale Makino water-extraced solution (COMWS) on the CYP1A1 activity and benzo[a]pyrene(B[a]P)-DNA adduct formation were examined. There were 6.8%, 12.1%, 15.1%, 18.3% and 22.6% inhibition in the activity of cytochrome 4501A1 enzyme with the treatment of $0.1{\times},\;0.5{\times},\;1{\times},\;3{\times},\;and\;5{\times}$ COMAS, respectively. At concentration of $0.1{\times}$ COMAS, the binding of $[^3H]B[a]P$ metabolites to DNA of NCTC-clone 1469 cell was significantly inhibited by 56.9%. These results suggest that COMAS has chemopreventive potential by inhibiting cytochrome P4501A1 activity and benzo[a]pyrene-DNA adduct formation.

  • PDF

Effect of Cnidii Rhizoma Water Extract on Chemopreventive Enzymes for Hepatocarcinoma (천궁 물추출물이 간암예방효소계에 미치는 영향)

  • Shon, Yun-Hee;Kim, Han-Gyu;Nam, Kyung-Soo
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.4 s.135
    • /
    • pp.297-302
    • /
    • 2003
  • Cnidii Rhizoma water extract (CRW) was tested for liver cancer chemopreventive potential by measuring the inhibition of phase I enzyme and benzo[a]pyrene-DNA adduct formation and induction of phase II detoxification enzymes. There was 17.0% inhibition in the activity of cytochrome P450 1A1 enzyme with the treatment of 150 mg/ml CRW. At concentration of 30 mg/ml CRW, the binding of $[^3H]B[a]P$ metablites to DNA of NCTC-clone 1469 cell was inhibited by 33.3%. CRW was potent inducer of quinone reductase (QR) and glutathione S-transferase (GST) activities in cultured murine hepatoma Hepalc1c7 cells. However, hepatic glutathione (GSH) level was not influenced by CRW. These findings suggest that CRW has chemopreventive potential of liver cancer by inhibiting cytochrome P450 1A1 activity and benzo[a]pyrene-DNA adduct formation and inducing QR and GST activities.

Effect of Xanthium sibiricum Patr. on Carcinogenesis in Human Cell Lines (창이자의 사람 세포주에서의 발암 억제효과)

  • So, Myung-Suk
    • Journal of Korean Biological Nursing Science
    • /
    • v.12 no.3
    • /
    • pp.127-132
    • /
    • 2010
  • Purpose: The aim of this study is to evaluate the effect of Xanthium sibiricum Patr. on carcinogenesis. Method: Water extract from Xanthium sibiricum Patr. (XPW) was prepared and investigated for the potential antitumor activity and inhibition of benzo[a]pyrene-DNA adduct formation and free radical formation. Result: It was shown that the water possess considerable toxicity toward tumor cell lines. Concentration of XPW at 1.0 mg/mL and 2.5 mg/mL resulted in more than 30% inhibition of growth in HeLa cells. Toxicity of XPW to A549 revealed that 54% inhibition of growth at concentration of 2.5 mg/mL. At concentrations of 0.5 mg/mL, 1.0 mg/mL and 2.5 mg/mL of XPW, the binding of [$^3H$]B[a]P metabolites to DNA of human Chang cell was inhibited by 19%, 33%, and 41%, respectively. There 18% and 32% inhibition in the free radical formation with XPW at the concentration of 1.0 mg/mL and 2.5 mg/mL, respectively. Conclusion: Water extract from Xanthium sibiricum Patr. (XPW) has antitumor and cancer chemopreventive activities.

Inhibition of the Formation of Adducts Between Metabolites of Benzo(a)pyrene and DNA by Panaxydol in vivo and in vitro (Benzo(a)pyrene 대사물질들의 DNA에 대한 Adduct 형성 억제에 미치는 Parlalrydol의 효과)

  • 박진규;김신일
    • Journal of Ginseng Research
    • /
    • v.13 no.1
    • /
    • pp.42-48
    • /
    • 1989
  • The binding of bay region diol-epoxides of polycyclic aromatic hydrocarbons (PAHs) to target tissue DNA is thought to be essential for the initiation of cancer by these compounds. In this study we investigated the effect of polyacetylenes such as panaxynol and panaxydol on the formation of benzo(a)pyreno (BP)-metabolite-DNA adduct in the liver of ICR mice. Treatment of mice by i.p. administration of polyacetylenes produced a marked reduction in BP metabolite binding to DNA in vitro. Following i.v. administration of (3H)BP(300, ${\mu}$Ci/21 nmoles/0.1 nt DMSO) to mice, radioactivity was detected in the DNA of the liver in vivo. The result of tentative identification of the 4 peaks between the two standard markers for high pressure liquid chromatography showed that the peaks. I, II, III, and IV were BP-phenol oxide-DNA adduct (or BP-diol-epoxide-dCyt. adduct), (-) BP$.$diolepoxide I:dGuO adduct, (+) BP-diol-epoxide I: dGuo adduct, and BP-diol-epoxide II:dGuO adduct, respectively. The minor adduct, (-) BP-diol epoxide I: dGuo was reduced to 6971 of the amount of the control, while the major adduct, (+) BP-diolepoxide I: dGuO(peak II) which was produced from (-) BP-7, 8-diol was reduced to 78% of that of the control. The amount of the minor adduct, BP-diol-epoxide II:dGuo adduct(peak IV) which formed from (+) BP-7, 8-diol was 58% of the control. These results show that the panaxydol is more related to inhibition of the formation of the minor ad- ducts than of the major adducts, which were generally produced from ($\pm$) BP-7, 8-dihydro-dials.

  • PDF

Oxidative Stress in C100 Cells Induced by Combined Treatmentof Benzo(a)pyrene and/or 2,3,7,8-Tetrachlorodibenzo-p-dioxin(TCDD)

  • Bae, Mi-Ok;Choi, Kyung-Ho;Lee, Hu-Jang;Kim, Hyun-Woo;Kim, Jun-Sung;Hwang, Soon-Kyung;Park, Jin-Hong;Cho, Hyun-Sun;Cho, Myung-Haing
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.3
    • /
    • pp.379-387
    • /
    • 2004
  • When an organism is exposed to various toxicants chronically, reactive oxygen species(ROS) are accumulated and eventually result in several biological effects from gene expression to cell death. In the present study we investigated the oxidative damage of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin(TCDD) and/or benzo(a)pyrene (B(a)P) in C100 cells. C100 cells treated with TCDD(30 nM) and B(a)P($3{\mu}M$) underwent diverse oxidative stress as determined through thiobarbituric acid-reactive substances(TBARS) formation, DNA fragmentation, DNA single strand break(SSB) assay, immunohistochemical staining of 8-hydroxy-2'-deoxyguanosine(8-OHdG), and mRNA expressions of antioxidant enzymatic genes such as Cu/Zn-SOD gene, GPx(glutathione peroxidase 5) gene, and catalase gene. Lipid peroxidation in C100 cells was determined through measuing the formation of TBARS. For theat, the cells were pretreated with TCDD(30 nM) and/or B(a)P($3{\mu}M$) for 0.5, 1, 2 and 4 days. TBARS formation was increased in TCDD(30 nM) and B(a)P($3{\mu}M$) and mixture($30nM\;TCDD+3{\mu}M\;B(a)P$) and positive control treatment groups comparing to the controls. Mixture treatment induced more DNA fragmentation than the single treatment group at day 6. Also, SSB in all treatment groups was clearly observed when compared with the negative control group. As with the expression of antioxidant enzyme, GPx 5mRNA, B(a)P alone and mixture($30nM\;TCDD+3{\mu}M\;B(a)P$) treatment were higher comparing to those of the negative control and TCDD treatment groups. Our results suggest that exposure of C100 cells to mixture of TCDD and B(a)P leads to significant oxidative damage comparing to the exposures to the individual chemicals. Mechanisms of action are discussed. Additional studies are needed to elucidate the detailed mechanism of mixture-induced toxicity.