• Title/Summary/Keyword: Bentonite Colloids

Search Result 10, Processing Time 0.02 seconds

A Study on the Stability of the Ca-Bentonite Colloids Using a Dynamic Light Scattering Method (동적광산란 방법을 이용한 칼슘벤토나이트 콜로이드의 안정성에 대한 연구)

  • Baik Min-Hoon;Park Jong-Hoon;Cho Won-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.3
    • /
    • pp.12-19
    • /
    • 2006
  • In this study, the stability of Ca-bentonite colloids from Gyeongju area was studied by investigating the changes in the size of the bentonite colloids using a dynamic light scattering method depending on the geochemical conditions such as pH and ionic strength. Kinetic and equilibrium coagulation behavior of the bentonite colloids was investigated by changing the pH and ionic strength of the bentonite suspensions. The results showed that the stability of the bentonite colloids strongly depended upon contact time, pH, and ionic strength. It was also shown that the bentonite colloids were unstable at higher ionic strength greater than 0.01 M $NaClO_4$ at whole pH values considered. In addition, the stability ratio Wand the critical coagulation concentration (CCC) were also calculated using the data from the kinetic coagulation experiments. The stability ratio W was decreased as the ionic strength increased and varied with pH depending on the ionic strength. The CCC of the Ca-bentonite colloids was about 0.05 M $NaClO_4$ around pH 7.

An Experimental Study on the Erosion of a Compacted Calcium Bentonite Block (압축된 칼슘벤토나이트 블록의 침식에 대한 실험적 연구)

  • Baik Min-Hoon;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.341-348
    • /
    • 2005
  • Bentonite has been considered as a candidate buffer material in the underground repository for the disposal of high-level radioactive waste because of its low permeability, high sorption capacity, self sealing characteristics, and durability in nature. In this study, the potential for separation of bentonite particles caused by the groundwater erosion was studied experimentally for a Korean Ca-bentonite under the relevant repository conditions. Results showed that bentonite particles can be generated at the bentonite/granite interface and mobilized by the water flow although the intrusion of bentonite into fracture by swelling pressure was observed to be small. Different processes of mobilization of theses colloids from the compacted bentonite block have been identified in this study. The concentration of particles eluted in water was increased as the flow rate increased. Thus the result reveals that the erosion of the bentonite surface due to the groundwater flow together with intrusion processes is the main mechanism that can mobilize bentonite colloids in the fracture of the granite.

  • PDF

An Experimental Study on the Sorption Properties of Uranium(VI) onto Bentonite Colloids (벤토나이트 콜로이드에 대한 우라늄(VI) 수착특성에 대한 실험적 연구)

  • Baik Min-Hoon;Cho Won-Jin;Hahn Pil-Soo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.239-247
    • /
    • 2005
  • In this study, an experimental study on the sorption properties of uranium(VI) onto bentonite colloids generated from a domestic calcium bentonite (called as Gyeongju bentonite). Gyeongju bentonite has been considered as a potential candidate buffer material in the Korean disposal concept for high-level radioactive wastes. The size and concentration of the bentonite colloids used in the sorption experiment were measured by a filtration method. The result showed that the concentration of the synthesized bentonite colloid suspension was 5100ppm and the size of the most of bentonite colloids(over $98\%$) was in the range of 200-450nm in diameter. The amount of uranium lost by the sorption onto bottle walls, by precipitation, and by ultrafiltration or colloid formation was analyzed by carrying out some blank tests. The loss of uranium by the ultrafiltration was significant in the lower ionic strength(i.e., in the case of 0.001M $NaClO_4$) due to the cationic sorption effect onto the ultrafilter by a surface charge reversion. The distribution coefficient (or pseudo-colloid formation constant) for the sorption of uranium(VI) onto bentonite colloids was $10^4^{\sim}10^6$ mL/g depending upon pH and the distribution coefficient was highest in the neutral pH around 6.5.

  • PDF

Sorption of Eu(III) and Th(IV) on Bentonite Colloids Considering Their Precipitation and Colloid Formation (침전 및 콜로이드 형성을 고려한 Eu(III)와 Th(IV)의 벤토나이트 콜로이드에 대한 수착)

  • Baik, Min-Hoon;Lee, Jae-Kwang;Lee, Seung-Yeop;Kim, Seung-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.2
    • /
    • pp.129-139
    • /
    • 2008
  • In this study, a sorption experiment of multivalent nuclides such as Eu(III) and Th(IV) relatively stable for redox reactions was carried out for bentonite colloids which had been prepared from the domestic Gyeongju bentonite. The amounts of the nuclides lost by an attachment to bottle walls, by a precipitation, and by a colloid formation were estimated by performing blank tests for the sorption experiments. Sorption coefficients, $K_d's$, reflecting the mass losses were obtained and investigated for the sorption of Eu(III) and Th(IV) onto the bentonite colloids. The net sorption coefficients $K_d's$ considering all the three mass losses were measured as about $10^6-10^7\;mL/g$ and $7{\times}10^6-10^7\;mL/g$ for Eu(III) and Th(IV), respectively, depending on pH. In particular, a precipitation occurred mainly at a pH greater than 5 for Eu(III) and a precipitation and colloid formation significantly occurred at a pH greater than 3 for Th(IV). The precipitation and colloid formation of the multivalent nuclides of Eu(III) and Th(IV) therefore should be considered when $K_d's$ are rightly obtained over the pH range where their precipitation and colloid formation become significant at a given concentration.

  • PDF

A new method to predict swelling pressure of compacted bentonites based on diffuse double layer theory

  • Sun, Haiquan
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.71-83
    • /
    • 2018
  • Compacted bentonites were chosen as the backfill material and buffer in high level nuclear waste disposal due to its high swelling pressure, high ion adsorption capacity and low permeability. It is essential to estimate the swelling pressure in design and considering the safety of the nuclear repositories. The swelling pressure model of expansive clay colloids was developed based on Gouy-Chapman diffuse double layer theory. However, the diffuse double layer model is effective in predicting low compaction dry density (low swelling pressure) for certain bentonites, and invalidation in simulating high compaction dry density (high swelling pressure). In this paper, the new relationship between nondimensional midplane potential function, u, and nondimensional distance function, Kd, were established based on the Gouy-Chapman theory by considering the variation of void ratio. The new developed model was constructed based on the published literature data of compacted Na-bentonite (MX80) and Ca-bentonite (FoCa) for sodium and calcium bentonite respectively. The proposed models were applied to re-compute swelling pressure of other compacted Na-bentonites (Kunigel-V1, Voclay, Neokunibond and GMZ) and Ca-bentonites (FEBEX, Bavaria bentonite, Bentonite S-2, Montigel bentonite) based on the reported experimental data. Results show that the predicted swelling pressure has a good agreement with the experimental swelling pressure in all cases.

REVIEW AND COMPILATION OF DATA ON RADIONUCLIDE MIGRATION AND RETARDATION FOR THE PERFORMANCE ASSESSMENT OF A HLW REPOSITORY IN KOREA

  • Baik, Min-Hoon;Lee, Seung-Yeop;Lee, Jae-Kwang;Kim, Seung-Soo;Park, Chung-Kyun;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.593-606
    • /
    • 2008
  • In this study, data on radionuclide migration and retardation processes in the engineered and natural barriers of High-Level Radioactive Waste (HLW) repository have been reviewed and compiled for use in the performance assessment of a HLW disposal system in Korea. The status of the database on radionuclide migration and retardation that is being developed in Korea is investigated and summarized in this study. The solubilities of major actinides such as D, Th, Am, Np, and Pu both in Korean bentonite porewater and in deep Korean groundwater are calculated by using the geochemical code PHREEQC (Ver. 2.0) based on the KAERI-TDB(Korea Atomic Energy Research Institute-Thermochemical Database), which is under development. Databases for the diffusion coefficients ($D^b_e$ values) and distribution coefficients ($K^b_d$ values) of some radionuclides in the compacted Korean Ca-bentonite are developed based upon domestic experimental results. Databases for the rock matrix diffusion coefficients ($D^r_e$ values) and distribution coefficients ($K^r_d$ values) of some radionuclides for Korean granite rock and deep groundwater are also developed based upon domestic experimental results. Finally, data related to colloids such as the characteristics of natural groundwater colloids and the pseudo-colloid formation constants ($K_{pc}$ values) are provided for the consideration of colloid effects in the performance assessment.

Introduction of Two-region Model for Simulating Long-Term Erosion of Bentonite Buffer (벤토나이트 완충재 장기 침식을 모사하기 위한 Two-region 모델 소개)

  • Jaewon Lee;Jung-Woo Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.228-243
    • /
    • 2023
  • Bentonite is widely recognized and utilized as a buffer material in high-level radioactive waste repositories, mainly due to its favorable characteristics such as swelling capability and low permeability. Bentonite buffers play an important role in ensuring the safe disposal of radioactive waste by providing a low permeability barrier and effectively preventing the migration of radionuclides into the surrounding rock. However, the long-term performance of bentonite buffers still remains a subject of ongoing research, and one of the main concerns is the erosion of the buffer induced by swelling and groundwater flow. The erosion of the bentonite buffer can significantly impact repository safety by compromising the integrity of buffer and leading to the formation of colloids that may facilitate the transport of radionuclides through groundwater, consequently elevating the risk of radionuclide migration. Therefore, it is very important to numerically quantify the erosion of bentonite buffer to evaluate the long-term performance of bentonite buffer, which is crucial for the safety assessment of high-level radioactive waste disposal. In this technical note, Two-region model is introduced, a proposed model to simulate the erosion behavior of bentonite based on a dynamic bentonite diffusion model, and quantitative evaluation is conducted for the bentonite buffer erosion with this model.

An Experimental Study on the Sorption of Uranium(VI) onto a Bentonite Colloid (벤토나이트 콜로이드로의 우라늄(VI) 수착에 대한 실험적 연구)

  • Baik Min-Hoon;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.3
    • /
    • pp.235-243
    • /
    • 2006
  • In this study, an experimental study on the sorption properties of uranium(VI) onto a bentonite colloid generated from Gyeongju bentonite which is a potential buffer material in a high-level radioactive waste repository was performed as a function of the pH and the ionic strength. The bentonite colloid prepared by separating a colloidal fraction was mainly composed of montmorillonite. The concentration and the size fraction of the prepared bentonite colloid measured using a gravitational filtration method was about 5100 ppm and 200-450 nm in diameter, respectively. The amount of uranium removed by the sorption reaction bottle walls, by precipitation, and by ultrafiltration was analyzed by carrying out some blank tests. The removed amount of uranium was found not to be significant except the case of ultrafiltration at 0.001 M $NaClO_4$. The ultrafiltration was significant in the lower ionic strength of 0.001 M $NaClO_4$ due to the cationic sorption onto the ultrafilter by a surface charge reversion. The distribution coefficient $K_d$ (or pseudo-colloid formation constant) of uranium(VI) for the bentonite colloid was about $10^4{\sim}10^7mL/g$ depending upon pH and ionic strength of $NaClO_4$ and the $K_d$ was highest in the neutral pH around 6.5. It is noted that the sorption of uranium(VI) onto the bentonite colloid is closely related with aqueous species of uranium depending upon geochemical parameters such as pH, ionic strength, and carbonate concentration. As a consequence, the bentonite colloids generated from a bentonite buffer can mobilize the uranium(VI) as a colloidal form through geological media due to their high sorption capacity.

  • PDF

Influence of EDZ on the Safety of a Potential HLW Repository

  • Hwang Yong-Soo;Kang Chul-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.4
    • /
    • pp.253-262
    • /
    • 2004
  • Construction of tunnels in a deep crystalline host rock for a potential High-Level Radioactive Waste(HLW) repository inevitably generates an excavation disturbed zone (EDZ). There have been a series of debates on whether a permeability in an EDZ increases or not and what would be the maximum depth of an EDZ. Recent studies show mixed opinions on permeability. However, there has been an international consensus on the thickness of an EDZ; 30 cm for TBM and 1 meter for controlled blast. One of the impacts of an EDZ is on determining the distance between adjacent deposition holes. The void gap by the excavation hinders relaxation of temperature profiles so that the current Korean reference designing distance between holes should be stretched out more to keep the maximum temperature in a buffer region below 100 degrees Celsius. The other impact of an EDZ is on the long-term post closure radiological safety. To estimate the impact, the reference scenario, the well scenario, is chosen. Released nuclides diffuse through a bentonite buffer region experiencing strong sorption and reach a fracture surrounded by a porous medium. Inside a fractured porous region, radionuclides migrate by advection and dispersion with matrix diffusion into a porous medium. Finally, they reach a well assumed to be a source of potable water for local residents. The annual individual dose is assessed on this well scenario to find out the significance of an EDZ. A profound sensitivity study was performed, but all results show that the impact is negligible. Even though the role of an EDZ turns out to be limited on overall safety assessment, still it is worthwhile to study the chemical role of an EDZ, such as a potential source for natural colloids, potential sealing of an open fracture by fine clay particles generated by the process of an EDZ, and alteration of a sorption mechanism by an EDZ in the future.

  • PDF