• Title/Summary/Keyword: Bentonite

Search Result 762, Processing Time 0.027 seconds

Evaluation of Water Suction for Compacted Bentonite Buffer Under Elevated Temperature Conditions

  • Yoon, Seok;Lee, Deuk-Hwan;Cho, Won-Jin;Lee, Changsoo;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.185-192
    • /
    • 2022
  • A compacted bentonite buffer is a major component of engineered barrier systems, which are designed for the disposal of high-level radioactive waste. In most countries, the target temperature required to maintain safe functioning is below 100℃. If the target temperature of the compacted bentonite buffer can be increased above 100℃, the disposal area can be dramatically reduced. To increase the target temperature of the buffer, it is necessary to investigate its properties at temperatures above 100℃. Although some studies have investigated thermal-hydraulic properties above 100℃, few have evaluated the water suction of compacted bentonite. This study addresses that knowledge gap by evaluating the water suction variation for compacted Korean bentonite in the 25-150℃ range, with initial saturations of 0 and 0.22 under constant saturation conditions. We found that water suction decreased by 5-20% for a temperature increase of 100-150℃.

Basic Physicochemical and Mechanical Properties of Domestic Bentonite for Use as a Buffer Material in a High-level Radioactive Waste Repository

  • Cho, W.J.;Lee, J.O.;Chun, K.S.;Hahn, D.S.
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.39-50
    • /
    • 1999
  • The physicochemical, mineralogical, hydraulic, swelling and mechanical properties of a domestic bentonite for use as the buffer material in a high-level waste repository have been measured. The bentonite is identified to be a Ca-bentonite, and the hydraulic conductivity of the compacted bentonite with the dry density higher than 1.4 Mg/㎥ is lower than 10$^{-11}$ m/s When the dry densities are 1.4 to 1.8 Mg/㎥, the swelling pressures are in the range of 6.6 to 143.5 kg/$\textrm{cm}^2$. The unconfined compressive strength is about 94 kg/$\textrm{cm}^2$, and the coefficient of volume change and the coefficient of consolidation are in the range of 0.O0249 to 0.02142 $m^2$/MN and 0.018 to 0.115$m^2$/year, respectively.

  • PDF

A comprehensive review on clay swelling and illitization of smectite in natural subsurface formations and engineered barrier systems

  • Lotanna Ohazuruike;Kyung Jae Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1495-1506
    • /
    • 2023
  • For the safe disposal of high-level radioactive waste using Engineered Barrier Systems (EBS), bentonite buffer is used by its high swelling capability and low hydraulic conductivity. When the bentonite buffer is contacted to heated pore water containing ions by radioactive decay, chemical alterations of minerals such as illitization reaction occur. Illitization of bentonite indicates the alteration of expandable smectite into non-expandable illite, which threatens the stability and integrity of EBS. This study intends to provide a thorough review on the information underlying in the illitization of bentonite, by covering basic clay mineralogy, smectite expansion, mechanisms and observation of illitization, and illitization in EBS. Since understanding of smectite illitization is crucial for securing the safety and integrity of nuclear waste disposal systems using bentonite buffer, this thorough review study is expected to provide essential and concise information for the preventive EBS design.

Investigation of the various properties of several candidate additives as buffer materials

  • Gi-Jun Lee;Seok Yoon;Taehyun Kim;Seeun Chang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1191-1198
    • /
    • 2023
  • Bentonite buffer material is a critical component in an engineered barrier system (EBS) for disposing high-level radioactive waste (HLW). The bentonite buffer material protects the disposal canister from groundwater penetration and releases decay heat to the surrounding rock mass; thus, it should possess high thermal conductivity, low hydraulic conductivity, and moderate swelling pressure to safely dispose the HLWs. Bentonite clay is a suitable buffer material because it satisfies the safety criteria. Several additives have been suggested as mixtures with bentonite to increase the thermal-hydraulic-mechanical-chemical (THMC) properties of bentonite buffer materials. Therefore, this study investigated the geotechnical, mineralogical, and THMC properties of several candidate additives such as sand, graphite, granite, and SiC powders. Datasets obtained in this study can be used to select adequate additives to improve the THMC properties of the buffer material.

Strength and Permeability Characteristics of Soil-Bentonite Mixture (Soil-Bentonite 혼합토의 강도 및 투수 특성)

  • Jin, Guangri;Im, Eunsang;Kim, Kiyoung;Sin, Donghoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.4
    • /
    • pp.5-12
    • /
    • 2010
  • Soil mixture using bentonite as a cutoff material is used a lot for various structures such as landfills, banks and dams as cutoff materials. But seepage water is expected to seep since shear failure of filter layer occurs due to external load, embankment load when constructed. Generally, only coefficient of permeability of Soil Mixture is considered irrespective of the changes of intensity on amount of additives. This research is to study on how the changes of amount of bentonite affects permeability and strength of soil mixture. So successive experiments for measuring permeability and strength were conducted as the amount of bentonite changes from 0 to 4%, mixing with the bed material and then making specimens. Around construction site of B dam. As a result, 2.085E-07 cm/sec was shown when the amount of Soil Mixture was 4%. It is proved that unconfined compressive strength and tensile strength increase as the amount of bentonite increases, but saturation shear strength of bentonite soil mixture from the CD experiment is hardly influenced by the amount of bentonite.

A Study on Unsaturated Permeable Properties of the Soil-Bentonite Mixtures (Soil-Bentonite 혼합토의 불포화 투수특성 연구)

  • Kim Man-il
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.123-132
    • /
    • 2005
  • This study presents the results of a laboratory investigation performed to study physical properties of soil-bentonite mixtures through the vertical permeation test and dielectric measurement test using Frequency Domain Reflectometry system for the liner of waste landfill. For the laboratory experiments, geotechnical testing was conducted on pre-mixed soil-bentonite which is consisted of standard sand, weathered granite soil and bentonite for estimating physical parameters such as a volumetric water content, void ratio and dielectric constant. In experiment results, initial soil-bentonite mixing rate has an effect of change of volumetric water content. Also change of volumetric water content of a soil-bentonite mixture is clearly detected to measure a response of dielectric constant. In order to estimate an unsaturated permeable property of soil-bentonite mixtures, equations between volumetric water content and dielectric constant were derived from this study.

A Study for Permeability as Mixing Ratio at Bentonite-mixed Soil (벤토나이트 혼합토의 혼합비에 따른 투수성 연구)

  • Ju Jae-Woo;Suh Kyeh-Won;Park Jong-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.45-52
    • /
    • 2006
  • A theoretical equation, from which we can get a suitable ratio of bentonite at bentonite-mixed soil, was derived for desigri of the impermeable condition. Bentonite is a soil with great expansion property and it has the permeability lower than $1\times10^{-7}cm/sec$ in spite of its maximum expansion state. Accordingly if the void of soil is filled with the liquid of bentonite, water will flow only through the veid of bentonite liquid. And the permeability of bentonite-mixed soil will always satisfy the condition as impermeable zone. However, because it is very difficult to mix uniformly bentonite with soil, it is thought that the actual mixing ratio fur the impermeable zone will be grater than that by theoretical equation. Permeability tests were performed to check the equation and a modified equation was suggested from the experimental results.

Applicability of Electrical Conductivity Monitoring Technique for Soil-bentonite Barrier (흙-벤토나이트월에 대한 전기전도도 모니터링 기법의 적용성 평가)

  • Oh, Myoung-Hak;Yoo, Dong-Ju;Kim, Yong-Sung;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.47-55
    • /
    • 2007
  • In this study, applicability of electrical conductivity monitoring technique for containment barrier such as soil-bentonite wall was evaluated. Laboratory tests including permeability tests and column tests were performed to understand variations in electrical conductivity at different bentonite contents, hydraulic conductivities, and heavy metal concentrations. The electrical conductivity of compacted soil-bentonite mixtures was found to increase proportionally with bentonite content. Accordingly, the hydraulic conductivity of compacted soil-bentonite mixtures which decreases linearly with increasing bentonite content was found to have an inversely proportional relationship with the electrical conductivity. In column tests, electrical conductivity breakthrough curves and concentration breakthrough curves were simultaneously obtained. These results indicated that electrical conductivity measurement can be an effective means of detecting heavy metal transport at the desired locations within barriers and verifying possible contaminant leakage. Experimental results obtained from this study showed that the electrical conductivity measurement can be a promising tool for monitoring of containment barrier.

A new method to predict swelling pressure of compacted bentonites based on diffuse double layer theory

  • Sun, Haiquan
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.71-83
    • /
    • 2018
  • Compacted bentonites were chosen as the backfill material and buffer in high level nuclear waste disposal due to its high swelling pressure, high ion adsorption capacity and low permeability. It is essential to estimate the swelling pressure in design and considering the safety of the nuclear repositories. The swelling pressure model of expansive clay colloids was developed based on Gouy-Chapman diffuse double layer theory. However, the diffuse double layer model is effective in predicting low compaction dry density (low swelling pressure) for certain bentonites, and invalidation in simulating high compaction dry density (high swelling pressure). In this paper, the new relationship between nondimensional midplane potential function, u, and nondimensional distance function, Kd, were established based on the Gouy-Chapman theory by considering the variation of void ratio. The new developed model was constructed based on the published literature data of compacted Na-bentonite (MX80) and Ca-bentonite (FoCa) for sodium and calcium bentonite respectively. The proposed models were applied to re-compute swelling pressure of other compacted Na-bentonites (Kunigel-V1, Voclay, Neokunibond and GMZ) and Ca-bentonites (FEBEX, Bavaria bentonite, Bentonite S-2, Montigel bentonite) based on the reported experimental data. Results show that the predicted swelling pressure has a good agreement with the experimental swelling pressure in all cases.