• Title/Summary/Keyword: Bentonite, Montmorillonite

Search Result 59, Processing Time 0.027 seconds

Mineralogy and Genesis of Bentonites from the Tertiary Formations in Geumgwangdong Area, Korea (제(第)3기층(紀層)에 부존(賦存)하는 점토광물(粘土鑛物)에 대(對)한 광물학적(鑛物學的) 및 성인적(成因的) 연구(硏究))

  • Kim, Soo Jin;Noh, Jin Hwan;Yu, Jae Young
    • Economic and Environmental Geology
    • /
    • v.18 no.4
    • /
    • pp.399-410
    • /
    • 1985
  • Bentonites from the Janggi Group of the Lower Miocene age from the Geumgwangdong area, Korea, have been studied for mineralogical and genetic characterization. The Janggi Group is subdivided, in ascending order, into the Janggi Conglomerate, the Nuldaeri Tuff, the Geumgwangdong Shale, the Lower Coal-bearing Formation, the Basaltic Tuff, and the Upper Coalbearing Formation. Bentonites occur as thin or thick beds in all sedimentary units of the Janggi Group, except for the Janggi Conglomerate. Significant bentonite deposits are found in the Nuldaeri Tuff, the Lower Coal-bearing Formation and the Basaltic Tuff. Bentonites consist mainly of smectite (mainly montmorillonite), with minor quartz, cristobalite, opal-CT and feldspar. Occasionally, kaolinite, clinoptilolite or gypsum is associated with bentonites. Bentonites were studied by the methods of petrographic microscopy, X-ray diffraction, thermal analysis (DT A and TG), infrared absorption spectroscopic analysis, SEM, intercalation reaction, and chemical analysis. Smectites commonly occur as irregular boxwork-like masses with characteristic curled thin edges, but occasionally as smoothly curved to nearly flat thin flakes. Most of smectites have layer charge of 0.25-0.42, indicating typical montmorillonite. Crystal-chemical relations suggest that Fe is the dominant substituent for Al in the octahedral layer and there are generally no significant substituents for Si in the tetrahedral layer. Ca is the dominant interlayer cation in montmorillonite. Therefore, montmorillonite from the study area is dioctahedral Ca-montmorillonite. Occurrence and fabrics of bentonites suggest that smectites as well as cristobalite, opal-CT and zeolites have been formed diagenetically from tuffaceous materials. The precursor of smectites is trachytic or basaltic tuff. Smectites derived from the former contain relatively more $Al_2O$ a and less $Fe_2O_3$ than those from the latter.

  • PDF

Mineral Chemistry and Geochemistry of the Bentonites Intercalated within the Basal Conglomerates of the Tertiary Sediments in Korea and Their Stratigraphical Implication (제3기층 기저역암에 협재되는 벤토나이트의 광물학, 지화학적 연구 및 층서적 적용)

  • 이종천;이규호;문희수
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.13-23
    • /
    • 2001
  • Bentonite layers are intercalated within the basal conglomerates in the Tertiary sedimentary basins of Kampo, Janggi and Pohang, southeastern Korea. Eighteen samples of the bentonites went through X-ray diffraction, scanning electron microscopy, heavy mineral analyses, chemical analyses and oxygen, hydrogen stable isotope analyses to define the mineralogical characters of the bentonites. Heavy minerals such as zircons, apatites, amphiboles and biotites separated from bentonites show clean and euhedral surfaces, which are the characteristic features of volcanic origin. But biotites from the Chunbook Conglomerate are found as altered and heavily broken flakes which implies longer transportation of these bentonites. $TiO_{2}/Al_{2}O_{3} ratios of <2 $\mu$m particle fractions (the Chunbook Conglomerate 0.031; Janggi 0.029; Kampo 0.025) suggest that those are originated from volcanic tuffs. That is, the higher the value is, the more mafic in chemical compositions of the original tuffs. Authigenic montmorillonite and zeolite minerals were observed by SEM, which indicates diagenesis origin of bentonites. But the samples from the Chunbook Conglomerate showed only chaotically packed clay flakes in the matrix of sands or conglomerates, which implies detrital influence, not authigenic origin. The structural formulae of montmorillonite from these basins reflects their environment of formation. Fe (Ⅵ) can show the redox condition of its past environment and much lower $Fe^{2+}(Ⅵ)/Fe^{3+}(Ⅵ)$ ratios in montmorillonite of the Chunbook Conglomerate imply the greater oxidizing influence. Calculated burial depths from oxygen stable isotope data of the samples from the Chunbook Conglomerate generally fall to the range of 929~963 m whereas the real burial depth of this area is only 530~580 m. This could be explained as the bentonites of the Chunbook conglomerate had not been formed in situ. Discriminant analyses with the data from chemical analyses and structural formulae of montmorillonites show that bentonites from three different basins could definitely be distinguished with each other. This result arises from the different chemical compositions of original volcanic ashes and the difference of sedimentary environments.

  • PDF

Adsorption of Anionic Species on Clay Minerals (점토광물에 의한 음이온 화학종 흡착 특성)

  • Moon, Jeong-Ho;Choi, Choong-Ho;Ryu, Byong-Ro;Kim, Cheol-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1058-1064
    • /
    • 2005
  • This research was designed to investigate the removal of anionic species, such as $F^-$, $Cl^-$ and ${NO_3}^-$, by adsorption on the clay minerals. Bentonite, $Ca^{2+}$ or $Na^+$ ion exchanged bentonite and montmorillonite, such as KSF and K10 from Sigma Aldrich, were used as the adsorbent. The component of five inorganic adsorbent was analyzed by XRF and XRD and the concentration of anion was measured by ion chromatography. From the experimental results, it was shown that the adsorption equilibrium was attained after 8-24 hours. For the amount of 6 g of each adsorbent, the adsorption capacities of $F^-$ and ${NO_3}^-$ on KSF was the largest as $825\;{\mu}g/g$ and $707\;{\mu}g/g$ respectively and that of $F^-$ on $Ca^{2+}$ ion exchanged bentonite was $255\;{\mu}g/g$ and that of ${NO_3}^-$ on K10 was $103\;{\mu}g/g$. In general, the efficiency of removal for the anionic species was increased with increasing of the amount of the adsorbent. Especially, for the amount of 6 g of KSF, the efficiency of removal for $F^-$ and ${NO_3}^-$ was 99% and 95% respectively. But, for all adsorbents, the efficiency of removal for $Cl^-$ was less than 9%. Also, a Freundlich equation was used to fit the acquired experimental data. As the result, for the $F^-$ and ${NO_3}^-$ on KSF, Freundlich constants, K, was respectively 1.09 and $0.45\;[mg/g][L/mg]^{1/n}$ and the adsorption intensity(1/n) was determined to be 0.08 and 0.27 respectively.

A review on the design requirement of temperature in high-level nuclear waste disposal system: based on bentonite buffer (고준위폐기물처분시스템 설계 제한온도 설정에 관한 기술현황 분석: 벤토나이트 완충재를 중심으로)

  • Kim, Jin-Seop;Cho, Won-Jin;Park, Seunghun;Kim, Geon-Young;Baik, Min-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.587-609
    • /
    • 2019
  • Short-and long-term stabilities of bentonite, favored material as buffer in geological repositories for high-level waste were reviewed in this paper in addition to alternative design concepts of buffer to mitigate the thermal load from decay heat of SF (Spent Fuel) and further increase the disposal efficiency. It is generally reported that the irreversible changes in structure, hydraulic behavior, and swelling capacity are produced due to temperature increase and vapor flow between $150{\sim}250^{\circ}C$. Provided that the maximum temperature of bentonite is less than $150^{\circ}C$, however, the effects of temperature on the material, structural, and mineralogical stability seems to be minor. The maximum temperature in disposal system will constrain and determine the amount of waste to be disposed per unit area and be regarded as an important design parameter influencing the availability of disposal site. Thus, it is necessary to identify the effects of high temperature on the performance of buffer and allow for the thermal constraint greater than $100^{\circ}C$. In addition, the development of high-performance EBS (Engineered Barrier System) such as composite bentonite buffer mixed with graphite or silica and multi-layered buffer (i.e., highly thermal-conductive layer or insulating layer) should be taken into account to enhance the disposal efficiency in parallel with the development of multilayer repository. This will contribute to increase of reliability and securing the acceptance of the people with regard to a high-level waste disposal.

The characteristics of premeability and formation of clay cake by electrophoresis technique (전기영동기법에 의한 점토케이크의 형성과 투수특성)

  • Kim, Jong-Yun;Kim, Tae-Ho;Kim, Dae-Ra;Han, Sang-Jae;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.938-946
    • /
    • 2008
  • This study is on sealing leakage holes where are in landfills to make clay cakes with clay particles, which have a negative surface charge using the method of electrophoresis. Generally, electrophoresis is the motion of charged particles in a colloid under the influence of an electric field; particles with a positive charge go to the cathode and negative to the anode. In this study in order to develop the prevention system of leakages of the leachate in landfills, one-dimensional electrophoresis tests were conducted for determining the properties of the motion of the electrophoresis and cutoff using the method of electrophoresis depending on various the effect factors such as types of clays, concentrations of the clays, and applied electric field. In case of the experiments of determining the optimum clays, Na and Ca-Bentonite, Na and Ca-Montmorillonite, which have greater zeta-potential, cation, exchange capacity as well as ability of cutoff, and Micro-cement inducing cementation were chosen and then the effect of those clays was investigated. Moreover, the properties of the motion and settling of the clays were investigated following electric field varied from 0 to 1V/cm at different concentration of the clays in order to determine both the properties of the motion of the clays and the efficiency of electric field when applying different direct current. Ultimately, the ability of cutoff was examined through measuring the permeability of the clay cakes derived from the one-dimensional electrophoresis tests.

  • PDF

Investigation of Properties of Synthetic Microparticles for a Retention and Drainage System

  • Lee, Sa-Yong;Hubbe Martin A.;Park, Sun-Kyu
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.61-66
    • /
    • 2006
  • Over the past 20 years there has been a revolution involving the use of nano or macro size particles as drainage and retention systems during the manufacture of paper. More recently a group of patented technologies called Synthetic Mineral Microparticles (SMM) has been invented and developed. This system has potential to further promote the drainage of water and retention of fine particles during papermaking. Prior research, as well as our on preliminary research showed that the SMM system has advantages in both of drainage and retention compared with montmorillonite (bentonite), which one of the most popular materials presently used in this kind of application. In spite of the demonstrated advantages of this SMM system, the properties and activity of SMM particles in the aqueous state have not been elucidated yet. Streaming current titrations with highly charged polyelectrolytes were used to measure the charge properties of SMM and to understand the interactions among SMM particles, fibers, fiber fines, and cationic polyacrylamide (cPAM) as a retention aid. It was found that pH profoundly affects the charge properties of SMM, due to the influence of Al-ions and the Si-containing particle surface. SEM pictures, characterizing the morphology, geometry and size distribution of SMM, showed an broad distribution of primary particle size. Dilution of SMM mixturee appeared to wash out particles smaller than 100 nm from the surface of larger particles, which themselves appeared to be composed of fused primary particles. DSC thermoporometry was used to measure the size distribution of nanopores within SMM particles.

  • PDF

Characterization of Poly(vinyl alcohol) Nanocomposite Films with Various Clays (다양한 점토를 이용한 폴리(비닐 알코올) 나노 복합체 필름의 특성 연구)

  • Ham, Miran;Kim, Jeong-Cheol;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.225-231
    • /
    • 2013
  • Poly(vinyl alcohol) (PVA) hybrid films containing 5 wt% pristine clay mineral were synthesized in the water solution. The various PVA hybrid films were synthesized from structurally different pristine clays: saponite (SPT), montmorillonite (MMT), hectorite (SWN), hydrophilic bentonite (PGV), and mica (Mica). The thermo-optical properties and morphologies of the PVA hybrid films were evaluated with various pristine clays. The nanostructure of the hybrid films was observed using transmission electron microscopy, which showed that the clay layers were well dispersed into the matrix polymer, although some clusters or agglomerated particles were also detected. The addition of pristine clay was more effective with regard to improving the thermal properties and gas barrier characteristics, whereas the optical transparency of the PVA hybrid films deteriorated with pristine clay.

Fiber Surface Engineering to Improve Papermaking Raw Material Quality

  • Wang Eugene I-Chen;Perng Yuan Shing
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.271-278
    • /
    • 2006
  • We used polymers of alternating cationic and anionic nature to build up shells on fiber surfaces, strengthen the worn-out fibers and improve paper properties made from such fibers. OCC and ONP pulps were either dipped or salted out in the cationic polyallylamine, polyacrylamide and starch solutions. After centrifugal drying, these were followed by treatments in anionic polyacrylic acid, poly-acrylamide, and starch solutions, respectively. The shell-enhanced fibers were formed into handsheets and their physical properties evaluated. The results show that building multiple shells on worn-out fiber surfaces can strengthen the fibers and paper. The simpler and more practical impregnation-centrifuging treatment provided the desired effects, whereas salting out the polymers produced somewhat superior fibers. The latter process, were impractical, however. The first pair of polymeric shells imparted marked strength improvement, whereas later layers had diminishing efficacies. Overall, the methods can improve fiber quality, attaining paper strength requirements without resorting to expensive measures. Alternate cationic polymer and filler powders were also deposited on fiber surface based on the micriparticle system in an anticipation of stiffness gains. Platy minerals, such as montmorillonite, bentonite, sericite, clay and talc were added following cationic PAM. After dewatering of polymer-pigment shelled fiber of one to 3 pairs of layers, handsheets either calendered or uncalendered were evaluated. The results indicate that regardless of calendaring, stiffness of the handsheets did not improve appreciably while certain other strength properties showed gains. We also attempted the novel starch gel filler addition method wherein tapioca starch and filers (PCC, sericite or clay) were mixed at high solids content of 50% and cooked until gelatinized. The filled handsheets were dried under various conditions and then tested for their properties. Improvements in strengths of modified filled paper were observed.

  • PDF

The Effects on the Atterberg Limits of Clays with Heat Treatment (열처리에 따른 점토의 애터버그 한계 영향)

  • Min, Tuk-Ki;Hwang, Kwang-Mo;Lee, Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.29-34
    • /
    • 2007
  • This study examines the effects of heat treatment under laboratory conditions for mixtures of two types of clay (kaolinite and montmorillonite). Clay samples were burned with different temperatures ranging from $100^{\circ}C\;to\;500^{\circ}C$. The Atterberg limits such as liquid and plastic limits were influenced with heat treatment. According to the experimental results, the liquid limits slightly decreased between $100^{\circ}C\;to\;300^{\circ}C$, whereas rapid decreases were observed after $300^{\circ}C$. The plastic limits did not show noticeable differences in the interval $100^{\circ}C\;to\;400^{\circ}C$. But the clay samples showed non plastic behavior at $500^{\circ}C$. The amount of NaCl was getting decreased with temperature. It also revealed that the pH values were also influenced with heat treatment, and the cation exchange capacity (C.E.C) values decreased with temperature.