• Title/Summary/Keyword: Beneficial use of coal ash

Search Result 8, Processing Time 0.023 seconds

A Study on Expanding the Recycling of Coal Ash for Minimizing Environmental Impact Imposed by the Establishment of Thermal Power Plant Ash Ponds (화력발전소 회처리장 조성에 따른 환경영향 최소화를 위한 석탄회 재활용 확대방안에 관한 연구)

  • Suh, Dong-Hwan;Maeng, Jun-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.5
    • /
    • pp.472-486
    • /
    • 2015
  • More than 8M tons of coal ashes are generated from coal-fired thermal power plants every year in Korea. Excluding the recycled portion (Current recycling rate: approximately 70%), all of the generated coal ashes end up in coastal landfills. Currently, the difficulties faced in establishing new ash treatment fields are attributed to the concerns raised over the environmental impacts caused by the landfills at individual plant facilities. Given the number of coal-fired thermal power plants to be built in the future (reflected in the 7th Basic Plan for Long-term Electricity Supply and Demand), building new ash treatment fields or seeking a new treatment plan seems unavoidable. Based upon a review of coal ash and its management, this study concluded that the most effective and fundamental strategy to minimize the environmental impacts resulting from coal ash landfills is to avoid constructing new coal-fired powerplants and furthermore, suggests that the practice of beneficial use and recycling the produced coal wastes should be encouraged.

Feasibility of Coal Combustion Ash on Acidity Regulation for Agricultural Use (석탄연소재의 산도조절을 통한 농업적 활용 가능성)

  • Oh, Sejin;Kang, Min Woo;Kim, Sung-Chul;Lee, Sang Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.1
    • /
    • pp.10-16
    • /
    • 2019
  • BACKGROUND: Coal ashes generated from thermal power plants have been known as beneficial materials for agricultural use because of their nutrient elements. However, there is limitation to recycle them due to their alkalinity. The objective of this study was to evaluate the effectiveness or safety of the coal ashes for their heavy metals on agricultural recycling when adjusted to pH of 5 with sulfuric acid. METHODS AND RESULTS: Concentration of hydrogen which is needed to adjust pH of coal ash was estimated by using a buffering curve and then the amount of sulfuric acid was changed by the estimation before incubation. Each of fly ash (FA) and bottom ash (BA) was collected from both thermal plants of Yeongdong (YD) and Yeongheung (YH). The pH values of coal ashes increased to 4.76 (from 4.34) after incubation with sulfuric acid for 56 days, closer to the targeted pH. Coal ashes also increased the contents of available phosphorus by 2-fold (165 mg/kg) and 11-fold (1,137 mg/kg) for YDBA and YDFA, respectively, compared to the control. CONCLUSION: The utilization of coal ash with its acidity regulation would be very beneficial to agriculture sector and further suggest promising environmental safety against heavy metals.

Studies on Expanding Application for the Recycling of Coal Ash in Domestic (국내 석탄재 재활용 확대 방안 연구)

  • Cho, Hanna;Maeng, Jun-Ho;Kim, Eun-young
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.563-573
    • /
    • 2017
  • Coal ash is generated from coal-fired thermal power plants every year. The remaining quantity of coal ash ends up in the landfills except for the recycled portion, and the existing ash pond capacity is limited almost. Currently, the difficulties are faced in building a new ash treatment plant because of the concerns about the environmental impacts of landfills at individual plant facilities. In terms of minimizing the environmental impact, the recycling and effective uses of coal ash are recognized as urgent issues to be challenged. Accordingly, this study examines the obstacles in expanding the recycling of the coal ash in South Korea and proposes solutions based on the case study analysis. The analysis results are as follows: 1) specific recycling guidelines and standards are required to be established in accordance with the contact medium (soil, ground water, surface water and sea water) and the chemical. 2) by providing the recognition environmentally safe in recycling the coal ash, transparency in establishing the planning stages and active communication with the community through promotion and research are essentially needed. 3) practical support system is required to encourage the power plant companies to use the coal ash as beneficial use.

Evaluation on Field Application of Controlled Low-Strength Materials Made of Coal Ash in Reclamation Site (석탄회를 활용한 저강도고유동화재의 공유수면매립현장에 대한 적용성 평가)

  • Kong, Jin-Young;Jung, Hyuk-Sang;Cho, Sam-Deok;Kim, Ju-Hyong;Hyun, Jae-Hyuk;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.27-39
    • /
    • 2012
  • This paper presented the strength and environmental characteristics of reclaimed-ground filled with controlled low-strength materials (CLSM) made of coal ash, small amounts of cement, and water in a reclamation site and evaluated the possibility of the use of coal ash on reclamation materials for beneficial use. Three-month period of SPT, CPT, environmental effects evaluation etc. were conducted. N values and cone resistances in ground filled with CLSM were greater than or similar to those in dredging sand. In case of land filled with coal ash except cement these values were lower than those in dredging sand. The results of soil and seawater pollution were lower than test criteria without high pH. Also the values of PH test were measured between pH 5.0~9.0, the criteria of industrial water in the Law for the Underground Water of Korea.

Improvement of Salt Accumulated Soil and Crop Growth using Coal Ash (석탄회를 이용한 염류집적 토양 개선과 작물 생육 증진)

  • Lee, Jong Cheol;Oh, Se Jin;Kang, Min Woo;Kim, Young Hyun;Kim, Dong Jin;Lee, Sang Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.2
    • /
    • pp.83-91
    • /
    • 2021
  • BACKGROUND: Cultivation area using agricultural plastic film facilities in Korea is rapidly increasing every year; however, it accelerates the salt accumulation in soils due to repeated cultivation and excessive use of chemical fertilizers. Coal ash contains various trace elements and has high potential to be used in agricultural purposes. This research was aimed to improve the quality of salts-accumulated soils and crop growth grown in the plastic film facilities using the soil amendment derived from coal ash and zero-valent iron powder. METHODS AND RESULTS: Soil amendment used in the study was manufactured using coal ash with iron powder and subjected to a typical upland soil for soil quality enhancement and two salts-accumulated soils for crop growth. After one month incubation of the salts-accumulated soils treated with the soil amendment, soil pH increased significantly and soil EC decreased by approximately 50%, compared to the control or the treatment without the soil amendment. Since the soil salts' concentration is proportional to EC, the subjected soil amendment can be proposed as an effective way to overcome soil salts accumulation in agricultural plastic film facilities. For crop growth, the length of roots and stems increased by approximately 10% and the dry weight also increased by a maximum of 75%, compared to the control. CONCLUSION: The soil amendment made from waste resources such as coal ash and zero-valent iron was found to not only be effective in improving salt-accumulated soils and crop yield but also be safe against harmful heavy metals.

Thermal Resistance Characteristics of the Backfill Material with Bottom Ash (저회 되메움재의 열저항 특성)

  • Jung, Hyuksang;Cho, Sam-Deok;Kim, Ju-Hyong;Park, Jongsik;Kong, Jin-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.6
    • /
    • pp.5-12
    • /
    • 2016
  • This paper deals with the result of thermal resistance test with backfill materials as bottom ash by using backfill material. Bottom ash, one of coal ashes, can be reused to replace sand because of its similar engineering properties. But without considering the thermal property, the abuse of bottom ash resulted in damage for existing structures. To investigate the thermal conductivity of bottom ash, laboratory tests for thermal resistance of that were carried out in this study. Thermal properties of bottom ash was compared with those of in-situ soil, sand, backfill material which can be applied as filling material. The tests were classified by water contents defined as the major influence factor. The beneficial use method of bottom ash was suggested as backfilling material.

Quality Improvement of High Volume Fly Ash Concrete due to Early Strength Gain Admixture (조강형 혼화제에 의한 플라이애시 다량 치환 콘크리트의 품질 향상)

  • Han, Cheon-Goo;Park, Jong-Ho;Lee, Joung-Ah
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.117-124
    • /
    • 2009
  • The purpose of the study was to improve quality of high volume fly ash concrete. The study evaluated on the possibility of early quality improvement of high volume fly ash concrete with early strength gain admixture ('GA' below) developed by the preceding research. The study regarded applying naphthalene admixture ('NA' below) to mix proportion substituting FA 15 % to be plain. In the event of substituting FA 20, 25 and 30 %, the study compared engineering properties of concrete with plain by applying GA. Because of features of fresh concrete, fluidity falls down when GA is applied. Therefore, its use amount shall be increased. Only, in W/B 60 %, it was beneficial since slump loss was reduced about 35~70 mm than plain. The study could see that AE use should be increased proportionally since air content was reduced by coming from AE absorption operation of unburned coal content included in FA according to an increase in the amount of FA use. Reduction effect of bleeding could be anticipated since the amount of bleeding appeared at least in FA 20 %. Because of hardened concrete, time of setting appeared in the same level as plain when GA was applied. Therefore, it is judged that delay of setting can be reduced. In compressive strength, the study could check the same strength development as plain when GA was applied, having nothing to do with W/B and curing temperature. However, it is thought that we shall pay attention to GA use in the event of FA 30 % substitution. Freezing and melting resistance had less early value than plain. However, it is judged that there will be no problem of frost resistance since there is no a large difference between freezing and melting resistance and plain in overall. In accelerated neutralization, it was analyzed that a problem of weakening in neutralization appointed as a demerit when FA was applied in mass in proportion with GA use could be settled to some extent.

  • PDF

Anti-inflammatory and Anti-oxidant Activities of Aster Scaber Ethanol Extract

  • Saba, Evelyn;Je, Nayeong;Song, Ji Eun;Shi, Sangwoo;Lee, Juho;Jung, Oneyoung;Han, Beom Jun;Lee, Soo Young;Park, Jongwon;Lee, Yuan Yee;Rhee, Man Hee
    • Biomedical Science Letters
    • /
    • v.28 no.3
    • /
    • pp.170-177
    • /
    • 2022
  • In mountainous regions, wild herbs which can also be edible in nature for humans and animals possess a wide array of biologically diversified properties. It is because of the fact that due to the cold weather of mountains; they are enriched in certain kinds of phytochemicals such as anti-oxidants, anti-inflammatory and many more. One such kind of an herb is Aster scaber (AS) in Korean. It is a widely cultivated culinary herb in Korean peninsula and used as a side dish in Korean culinary cuisine. In view of its extensive use in cuisine, we geared to unravel the anti-oxidant and anti-inflammatory effects of AS in murine alveolar macrophage cell line (MH-S). 2,2'-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assays revealed a dose dependent (7.8~1,000 ㎍/mL) inhibition of oxidation by AS 70% ethanol (ASE) extract as compared to Trolox and Ascorbic acid respectively. Nitric oxide assay (NO) showed a dose dependent decrease (5~40 ㎍/mL) in MH-S cells with ASE when stimulated with Coal Fly Ash (CFA). Moreover, this dose for NO reduction was also found to be least cytotoxic for cells as determined by cellular viability (MTT) assay. The gene expression of pro-inflammatory mediators (iNOS and COX-2) and cytokines (IL-6 and IL-1β) and were also dose dependently inhibited by ASE in MH-S cells through RT-PCR. Therefore, in light of these findings, AS exhibited a strong anti-oxidant and anti-inflammatory agent. These results also justify the extensive use of this mountainous herb in culinary practices for beneficial effects on human health.