• Title/Summary/Keyword: Bending.Compressive strength

Search Result 436, Processing Time 0.029 seconds

Engineering properties of Permeable Polymer Concrete with Fly Ash and CaCO3 (플라이 애쉬와 탄산칼슘을 혼입(混入)한 투수성(透水性) 폴리머 콘크리트의 공학적(工學的) 성질(性質))

  • Sun, Chan Yong;Han, Young Kyu;Youn, Joon No;Kim, Kyung Tae;Seo, Dae Seuk;Nam, Ki Sung
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.278-284
    • /
    • 1998
  • This study was performed to evaluate the engineering properties of permeable polymer concrete with Fly Ash and $CaCo_3$. The following conclusions were drawn; 1. The unit weight was in the range of $1,830{\sim}1,932kgf/m^3$, the unit weights of those concrete were decreased 16~20% than that of the normal cement concrete. 2. The highest strength was achieved by fly ash 50% and $CaCo_3$ 50% filled permeable polymer concrete, it was increased 26% by compressive strength, 121% by tensile strength and 275% by bending strength than that of the normal cement concrete, respectively. 3. The ultrasonic pulse velocity was in the range of 2,805~2,904m/s, which was showed about the same compared to that of the normal cement concrete. Fly ash 50% and $CaCo_3$ 50% filled permeable polymer concrete was showed higher pulse velocity.

  • PDF

Experimental study on the Flexural Capacity of U-shape Composite Beam (U-형 복합보의 휨 성능에 관한 실험적 연구)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.143-149
    • /
    • 2019
  • In this study, a U-shape composite beam was developed to be effectively used for a steel parking lot which is 8m or lower in height. When the U-shape composite beam was applied to a steel parking lot, essential considerations were story-height and long-span. In addition, due to the mixed structural system with reinforced concrete and steel material, the U-shape composite beam needed to have a structural integrity and reliable performance over demand capacity. The main objective of this study was to investigate the performance of the structure consisting of the reinforced concrete (RC) slab and U-shape beam. A U-shape composite beam generally used at a parking lot served as a control specimen. Four specimens were tested under four-point bending. To calculate theoretical values, strain gauges were attached to rebar, steel plate, and concrete surface in the middle of the specimens. As the results, initial yielding strength of the control specimen occurred at the bottom of the U-shaped steel. After yielding, the specimen reached the maximum strength and the RC slab concrete was finally failed by concrete crush due to compressive stress. The structural performance such as flexural strength and ductility of the specimen with the increased beam depth was significantly improved in comparison with the control specimen. Furthermore, the design of the U-shape composite beam with the consideration of flexural strength and ductility was effective since the structural performance by a negative loading was relatively decreased but the ductile behavior was evidently improved.

Physical Properties of Knitted Fabrics on Knitting Structure for Medical Compression Garments (고령사회에 대비한 노인 건강 의류 제품 개발을 위한 기초 연구 - 니트 소재 압박복을 중심으로 -)

  • Park, Myung-Ja;Sang, Jeong-Seon
    • The Research Journal of the Costume Culture
    • /
    • v.19 no.2
    • /
    • pp.334-345
    • /
    • 2011
  • A study on compressive garments guarantee the required pressure and form depending on the type of disease and the state of injury can be used in the preventive treatment of cardiovascular disease. This research is to provide a preliminary data to develop medical clothing products, especially knitted compression garments. Starting from analyzing knitted structure of imported pressure goods to apply to test samples, 11 kinds of knitted stretchy fabrics were manufactured under the various knitting conditions, then their tensile, mechanical and hand properties were measured. In comparison size changes by knitting structure, tuck stitch applied structure showed an increase in course direction and decrease in wale direction. Float stitch applied structure indicated the contraction of size in width because of unformed loops and floated yarn on the technical back of fabric. As a result of tensile properties in tuck and float applied structure, tensile strength was increased in the course direction. On the other hand, the more loops overlapped due to the tuck and float stitch, the more decreased their elongation and elastic recovery were. In case of mechanical properties, as the tuck and float stitch were overlapped double or triple the bending and shearing properties were risen. Accordingly, the drape of fabric becomes stiff, and its surface becomes rough and uneven. The measurements of hand properties showed that the value of KOSHI, FUKURAMI NUMERI in tuck and float applied structure are higher than the plain structure. This results from the relationship between the mechanical and hand properties.

Performance Evaluation of Laminated-Tempered Glass as a Component of Noise Barrier on Metro Railway Elevated Bridge Against Train Induced Vibration and Wind Load (지하철 고가교 접합강화유리 방음판의 열차진동 및 풍하중에 대한 성능평가)

  • Kim, Suk-Su;Lee, Ho-Beom;Song, Jae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.30-41
    • /
    • 2017
  • Types of noise barrier installed for noise attenuation are largely divided into noise-absorbing format and noise-proofing format. In these days, installation of transparent noise barrier is general trend to solve problems that hinder sunshine and landscape. Some kinds of transparent boards are used to one of components in noise barriers, but in some cases, less transparency and worse pollution due to yellowing phenomena, and severe material deformation are to harm the urban aesthetics Therefore laminated-tempered glass board in that yellowing phenomena does not occur can be replaced as a transparent one to secure those shortcomings. In this paper, the structural safety against train induced vibration and the resistibility to wind load are analyzed for laminated-tempered glass system as a component of noise barrier installed on Metro railway elevated bridges. Also the appropriateness is evaluated through flexural bending performance test, compressive strength test, modulus of elasticity tests, and impact test for the system or the glass material itself. All of these processes are intended to present the deployment of logic to evaluate the adequacy for the system.

Structural Performances of an Axially-loaded Node in Single Layered Free Form Space Structures (단층 프리폼 대공간 구조물의 노드에 대한 축하중 구조성능 평가)

  • Lee, Kyoung-Ju;Oh, Jin-Tak;Hwang, Kyung-Ju;Ju, Young-Kyu;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.59-71
    • /
    • 2012
  • Results of the analysis of the structural behavior of axially loaded nodes in freeform structure were not fully understood due to certain difficulties, including the application of various welding and bolting types. In this study, a node of single layered freeform structure was tested to determine its structural behavior when subjected to axial loads. The tests were classified into node ball tests to evaluate the center of the node subjected to cyclic and monotonic loading. The node part tests were also conducted to evaluate the whole node subjected to monotonic loading. The test showed that the node ball is safe with the tensile force, but the node ball needs to increase its strength with the node loaded compressive force due to the additional bending moment of the node ball's asymmetric form.

Evaluation of dynamic properties of extra light weight concrete sandwich beams reinforced with CFRP

  • Naghipour, M.;Mehrzadi, M.
    • Steel and Composite Structures
    • /
    • v.7 no.6
    • /
    • pp.457-468
    • /
    • 2007
  • Analytical and experimental investigation on dynamic properties of extra lightweight concrete sandwich beams reinforced with various lay ups of carbon reinforced epoxy polymer composites (CFRP) are discussed. The lightweight concrete used in the core of the sandwich beams was made up of extra lightweight aggregate, Lica. The density of concrete was half of that of the ordinary concrete and its compressive strength was about $100Kg/cm^2$. Two extra lightweight unreinforced (control) beams and six extra lightweight sandwich beams with various lay ups of CFRP were clamped in one end and tested under an impact load. The dimension of the beams without considering any reinforcement was 20 cm ${\times}$ 10 cm ${\times}$ 1.4 m. These were selected to ensure that the effect of shear during the bending test would be minimized. Three other beams, made up of ordinary concrete reinforced with steel bars, were tested in the same conditions. For measuring the damping capacity of sandwich beams three methods, Logarithmic Decrement Analysis (LDA), Hilbert Transform Analysis (HTA) and Moving Block Analysis (MBA) were applied. The first two methods are in time domain and the last one is in frequency domain. A comparison between the damping capacity of the beams obtained from all three methods, shows that the damping capacity of the extra lightweight concrete decreases by adding the composite reinforced layers to the upper and lower sides of the beams, and becomes most similar to the damping of the ordinary beams. Also the results show that the stiffness of the extra lightweight concrete beams increases by adding the composite reinforced layer to their both sides and become similar to the ordinary beams.

Advanced Analysis of Connections to Concrete-Filled Steel Tube Columns using the 2005 AISC Specification (AISC 2005 코드를 활용한 콘크리트 충전 합성기둥의 해석과 평가)

  • Park, Ji-Woong;Rhee, Doo-Jae;Chang, Suong-Su;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.9-21
    • /
    • 2012
  • Concrete filled steel tube (CFT) columns have been widely used in moment resisting frame structures both in seismic zones. This paper discusses the design of such members based on the advanced methods introduced in the 2005 AISC Specification and the 2005 Seismic Provisions. This study focuses particularly on design following both linear and nonlinear methods utilizing equivalent static and dynamic loads for low-rise moment frames. The paper begins with an examination of the significance of pseudo-elastic design interaction equations and the plastic ductility demand ratios due to combined axial compressive force and bending moment in CFT members. Based on advanced computational simulations for a series of five-story composite moment frames, this paper then investigates both building performance and new techniques to evaluate building damage during a strong earthquake. It is shown that 2D equivalent static analyses can provide good design approximations to the force distributions in moment frames subjected to large inelastic lateral loads. Dynamic analyses utilizing strong ground motions generally produce higher strength ratios than those from equivalent static analyses, but on more localized basis. In addition, ductility ratios obtained from the nonlinear dynamic analysis are sufficient to detect which CFT columns undergo significant deformations.

Physical and Mechanical Properties of Expanded Polystyrene Bead Concrete (팽창 폴리스틸렌 비드 콘크리트의 물리.역학적 특성)

  • 민정기;김성완;성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.6
    • /
    • pp.83-95
    • /
    • 1996
  • The normal cement concrete is widely used material to build the construction recently, but it has a fault to increase the dead load on account of its unit weight is large compared with strength. So, main purpose of this study was to establish the physical and mechanical properties of lightweight concrete using expanded polystyrene bead on fine aggregate and natural gravel, expanded clay and pumice stone on coarse aggregate. The test rusults of this study are summarized as follows; 1. The water-cement ratio of concrete using pumice stone was larger than that of the concrete using natural gravel and expanded clay. 2. The unit weights of concrete using pumice stone and expanded caly were shown less than 1,000g/$m^3$. 3. The compressive strengths of all types were shown less than 60kg/$cm^2$, tensile and bending strengths were shown less than l3kg/$cm^2$ and 3lkg/$cm^2$$^2$, respectively. 4. The pulse velocity of concrete was shown similar with using natural gravel and pumice stone, and shown the lowest using pumice stone. 5. The dynamic modulus of elasticity of concrete was shown considerably smaller, and shown the lowest using pumice stone. 6. The static modulus of elasticity of concrete using expanded clay and pumice stone were shown considerably smaller, and shown 22% ~29% as compared with the dynamic modulus of elasticity. 7. The stress-strain curves of concrete were shown similar, generally. And the curves were repeated at short intervals increase and decreased irregularly.

  • PDF

Evaluation on the Deformation Capacity of Multipurpose Floor Level Joint System (다목적 바닥 레벨조인트의 변형 능력 평가)

  • Seo, Soo-Yeon;Choi, Yun-Cheul;Kang, In-Seok;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.197-204
    • /
    • 2005
  • Multipurpose Floor Level Joint(MFLJ) is a new construction technology system which was developed in domestic. By using this system, it is possible not only to absorb the deformation at expansion joint due to shrinkages of concrete but also to make ease the floor leveling during the concrete casting at floor. The system consists of two elements, supporting devices and rails. Their structural capacities were verified through several experimental programs, such as compressive strength test of support and bending test of rail. The purpose of this paper is to evaluate the deformation absorbing capacity of the floor level joint. An experimental work was carried out to simulate the deformation condition at the joint and the test result was analyzed and evaluated. In addition, FEM analysis for expansion joint of typical building was also performed to predict the real behavior of MFLJ. The test results showed that MFLJ has sufficient deformation capacity required to act as expansion joint.

Analysis of RC Beams Strengthened with Fiber Sheets (섬유시트로 보강된 RC 보의 해석기법 연구)

  • Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.154-163
    • /
    • 2006
  • This paper presents a nonlinear analysis method for the reinforced concrete beams strengthened by the external bonding of high strength, lightweight fiber sheets on the tension face of the beams. The method is based on the results of experimental studies. The experimental study involved tensile tests of 120 specimens to evaluate the tensile properties of fiber sheets(carbon, glass, and aramid fiber) and bending tests of 75 beams strengthened with various types of fiber sheets to evaluate the flexural capacities. Based on these experimental results, reasonable rupture strains of the fiber sheets were estimated. The nonlinear flexural analysis considered nonlinear flexural stresses as compressive and tensile stresses of concrete, load-deflection curves, and rupture strains of fiber sheets. The nonlinear flexural analysis accurately predicts the load-deflection response and the flexural behavior of the retrofitted beams.