• Title/Summary/Keyword: Bending.Compressive strength

Search Result 437, Processing Time 0.022 seconds

Effects of flange and web slenderness ratios on elastic flange local buckling of doubly symmetric I-girders (이축 대칭 I형 거더의 플랜지 탄성좌굴에 대한 플랜지와 복부판 세장비의 영향)

  • Lee, Jeong-Hwa;Lee, Kee-Sei;Byun, Nam-Joo;Kang, Young-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.456-464
    • /
    • 2016
  • Increasing the strength of structural materials allows their self-weight to be reduced and this, in turn, enables the structures to satisfy esthetic requirements. The yield strength of high-performance steel is almost 480 MPa, which is approximately 50% higher than that of general structural steel. The use of high strength materials, however, makes the sections more slender, which can potentially result in significant local stability problems. The strength of slender element sections might be governed by their elastic buckling behavior, and the elastic buckling strength is very sensitive to the boundary conditions. Because the web provides the boundary conditions of the compressive thin-flange, the stiffness of the web can affect the elastic buckling strength of the flange. In this study, therefore, the effects of the flange and web slenderness ratios on the elastic flange local buckling of I-girders subjected to a pure bending moment were evaluated by finite element analysis (FEA). The analysis results show that the elastic local buckling strength and buckling modes were affected not only by the web support conditions, but also by the flange and web slenderness ratios.

Mechanical Properties of Very Rapid Hardening Polymer Mortar for Concrete Repair (보수용 초속경 폴리머 모르타르의 역학적 특성)

  • Hong, Kinam;Shin, Junsu;Han, Sanghoon;Seo, Dongwoo;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.31-37
    • /
    • 2014
  • In this study, mechanical properties of Very-Rapid Hardening Polymer (VRHP) mortar were investigated. To do it, 75 VRHP mortar specimens were tested by the compressive test, bending test, bonding test, freezing and thawing test, length variation test, and water absorption test. From the test results, it was confirmed that the bond strength of VRHP was higher than that of normal concrete by 50 %, and the resistance of freezing and thawing of VRHP was more excellent than normal concrete. In addition, length variation ratio and water absorption ratio of VRHP were smaller than those of normal concrete by 20 %. Therefore, It should be mentioned that VRHP can be successfully used as the material for repairing the crack of concrete structure.

Determination of structural behavior of Bosporus suspension bridge considering construction stages and different soil conditions

  • Gunaydin, Murat;Adanur, Suleyman;Altunisik, Ahmet Can;Sevim, Baris;Turker, Emel
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.405-429
    • /
    • 2014
  • In this paper, it is aimed to determine the structural behavior of suspension bridges considering construction stages and different soil conditions. Bosporus Suspension Bridge connecting the Europe and Asia in Istanbul is selected as an example. Finite element model of the bridge is constituted using SAP2000 program considering existing drawings. Geometric nonlinearities are taken into consideration in the analysis using P-Delta large displacement criterion. The time dependent material strength of steel and concrete and geometric variations is included in the analysis. Time dependent material properties are considered as compressive strength, aging, shrinkage and creep for concrete, and relaxation for steel. To emphases the soil condition effect on the structural behavior of suspension bridges, each of hard, medium and soft soils are considered in the analysis. The structural behavior of the bridge at different construction stages and different soil conditions has been examined. Two different finite element analyses with and without construction stages are carried out and results are compared with each other. At the end of the analyses, variation of the displacement and internal forces such as bending moment, axial forces and shear forces for bridge deck and towers are given in detail. Also, displacement and stresses for bridge foundation are given with detail. It can be seen from the analyses that there are some differences between both analyses (with and without construction stages) and the results obtained from the construction stages are bigger. It can be stated that the analysis without construction stages cannot give the reliable solutions. In addition, soil condition have effect on the structural behavior of the bridge. So, it is thought that construction stage analysis using time dependent material properties, geometric nonlinearity and soil conditions effects should be considered in order to obtain more realistic structural behavior of suspension bridges.

Optimized Mixing Design of Lightweight Aerated Concrete by Response Surface Analysis (반응표면분석법에 따른 경량기포콘크리트 최적배합 도출에 관한 연구)

  • Lee, Sang-An;Jung, Chan-Woo;Kim, Wha-Jung;Ahn, Jung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.745-752
    • /
    • 2009
  • This paper presents the optimized mixing design of lightweight aerated concrete using hydrogen peroxide. Design of experiments in order to the optimized mixing design was applied and commercial program (MINITAB) was used. Statistical analysis was used to Box-Behnken (B-B) method in response surface analysis. The influencing factors of experimental are unit cement content, water ratio and hydrogen peroxide ratio. According to the analysis of variance, at the hardened state, water ratio and hydrogen peroxide ratio affects on dried density, compressive strength and bending strength of lightweight aerated concrete, but unit cement content affects on only dried density. In the results of response surface analysis, to obtain goal performance, the optimized mixing design for lightweight aerated concrete using hydrogen peroxide were unit cement content of 800 kg/$m^3$, water ratio of 44.33% and hydrogen peroxide ratio of 10%.

Fracture Characteristics of Polypropylene Fiber Reinforced Concrete (폴리프로필렌 섬유보강 콘크리트의 파괴특성 연구)

  • Shin-Won Paik
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.230-240
    • /
    • 1997
  • An experimental research investigation of the fracture properties of polypropylene fiber reinforced concrete is reported. Fibers used in this experiment were two types, monofilament and fibrillated polypropylene fibers. Fiber length was 19 mm, and volume fractions were 0, 1, 2, and 3%. Also, as initial notch depths influence the fracture properties of fiber reinforced concrete, the notch depth ratios by specimen height were 0.15, 0.30 and 0.45. The main objective of this experimental program is to obtain the load-deflection and the load-CMOD curves, to investigate the fracture properties of the polypropylene fiber reinforced concretes. Therefore, the flexural specimen testings on the four-point bending were conducted. Then, the load-load point displacement and the load-crack mouth opening displacement curves were measured. The effects of different volume fractions of the monofilament and the fibrillated polypropylene fiber reinforced concrete on the compressive strength, flexural strength and toughness, stress intensity factor, and fracture energy were investigated through the experimental results.

  • PDF

The Optimal Mixing Design of the PHC Piles Utilizing the Air Cooled Blast Furnace Slag as Coarse Aggregate (서냉 고로슬래그 굵은골재를 활용한 PHC 파일의 최적배합 및 물리적 특성)

  • Park, Yong-Kyu;Kim, Hyun-Woo;Kim, Seung-Il;Hur, Kab-Soo;Yoon, Ki-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.137-144
    • /
    • 2014
  • The PHC pile utilizing the air-cooled blast-furnace slag as coarse aggregate was studied. This research was progressed with the range from the indoor mixing design evaluation into the actual goods production. The physical properties of the PHC pile are determined to satisfy through the appropriate mixing design adjustments. However, it should eliminate the aggregates including CaO and MgO in SG when it utilize in an AC (autoclave) type manufacturing process. It satisfied the bending moment, shear strength, and compressive strength of KS F 4306 except the surface states of the pile.

Preparation of Castable Refractories by Recycling of Aluminum Dross (알루미늄드로스를 재활용한 캐스타블내화물 제조)

  • Park Hyungkyu;Lee Hooin;Lee Jinyoung
    • Resources Recycling
    • /
    • v.12 no.3
    • /
    • pp.46-53
    • /
    • 2003
  • Recycling of aluminum dross is an important issue in the secondary aluminum industries. In this study, aluminum dross generated in the domestic secondary aluminum industry was processed to use it as raw material for producing alumina refractories. Sample dross was classified according to its size. The dross smaller than 1 mm was leached with sodium hydroxide solution to extract the remained aluminum from the dross into the solution. and then aluminum hydroxide precipitate was recovered from the leach liquor. The waste residue in the leaching was washed, dried and roasted. Most remained metallic components in the residue was changed into oxide through the processes. The roasted dross was made into alumina castable refractories by mixing with aggregates and a binder. Bending strength of the tested castable specimen was over $25\;kg/\textrm{m}^2$ and compressive strength over $80\;kg/\textrm{cm}^2$, which satisfied the Korean Standard value respectively. From the results, it was suggested that this process could be applicable to recycling of aluminum dross.

Properties of Non Sintered Cement Mortar using Ferro Nickel Slag (페로니켈 슬래그를 사용한 비소성 시멘트 모르타르의 특성)

  • Youn, Min-Sik;Na, Hyeong-Won;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.641-649
    • /
    • 2022
  • This study aims to completely develop a non sintered cement mortar using industrial by-products. To replace Portland cement, blast furnace slag, circulating fluidized bed fly ash, and pulverized coal fly ash were used, and natural aggregates were substituted with ferronickel slag. To understand the characteristics of the non sintered cement mortar to which ferronickel slag is applied, an experiment was conducted by classifying the particle size. Fluidity and workability were confirmed through the flow test, and bending and compressive strength tests were conducted at 3, 7, and 28 days of age. In addition, durability was identified through a chloride ion penetration test. Through the study, it is judged that the binder, which completely replaced cement and aggregate, has high potential of being used as a construction material. Notably, it was confirmed to be advantageous for strength and durability.

Experimental investigation of impact behaviour of shear deficient RC beam to column connection

  • Murat, Aras;Tolga, Yilmaz;Ozlem, Caliskan;Ozgur, Anil;R. Tugrul, Erdem;Turgut, Kaya
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.619-632
    • /
    • 2022
  • Reinforced concrete (RC) structures may be subjected to sudden dynamic impact loads such as explosions occurring for different reasons, the collision of masses driven by rockfall, flood, landslide, and avalanche effect structural members, the crash of vehicles to the highway and seaway structures. Many analytical, numerical, and experimental studies focused on the behavior of RC structural elements such as columns, beams, and slabs under sudden dynamic impact loads. However, there is no comprehensive study on the behavior of the RC column-beam connections under the effect of sudden dynamic impact loads. For this purpose, an experimental study was performed to investigate the behavior of RC column-beam connections under the effect of low-velocity impact loads. Sixteen RC beam-column connections with a scale of 1/3 were manufactured and tested under impact load using the drop-weight test setup. The concrete compressive strength, shear reinforcement spacing in the beam, and input impact energy applied to test specimens were taken as experimental variables. The time histories of impact load acting on test specimens, accelerations, and displacements measured from the test specimens were recorded in experiments. Besides, shear and bending crack widths were measured. The effect of experimental variables on the impact behavior of RC beam-column connections has been determined and interpreted in detail. Besides, a finite element model has been established for verification and comparison of the experimental results by using ABAQUS software. It has been demonstrated that concrete strength, shear reinforcement ratio, and impact energy significantly affect the impact behavior of RC column-beam connections.

Performance Evaluation of Concrete Bench Flume Using Industrial by Products (산업부산물을 이용한 콘크리트 벤치플룸의 성능평가)

  • Jae-Ho Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.276-281
    • /
    • 2023
  • Water pipes manufactured using existing Portland cement suffer from the problem of rapid deterioration and reduced durability due to the hydration product of cement being vulnerable to acids. Therefore, in this study, water pipes were manufactured using slag and fly ash, which are industrial by-products from various industries, and their characteristics were analyzed. As a result of the experiment, slump in unhardened concrete tended to increase due to the ball bearing action of fly ash, and the amount of air was reduced due to unburned coal, indicating that measures for frost resistance were needed. In addition, the initial strength of the compressive strength was increased through steam curing, and the results were equal to or better than OPC when mixing more than 50 % of slag. The acid resistance results showed that the mass reduction rate was less than 5 %, showing excellent durability performance, and the bending failure load of the water pipe also exceeded the KS standards, so it is judged to be commercializable.