• Title/Summary/Keyword: Bending.Compressive strength

Search Result 437, Processing Time 0.022 seconds

The Properties of Restorative Cement Mortar with Insulation Performance for Improvement of Durability (내구성 향상을 위하여 단열성능이 부여된 단면복구 MORTAR의 물성)

  • Kang, Hyun-Ju;Na, Seung-Hyun;Song, Myong-Shin;Jeong, Eui-Dam;Seo, Byung-Dol
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.373-380
    • /
    • 2010
  • In this study, we studied on the durability of restorative cement mortar for deteriorated concrete at complex deteriorated conditions as variation of temperature and of humidities. We made a comparison between restorative materials with insulation function and restorative materials without insulation function in items of compressive and bending strength and permeability of water, durability for carbonation, salt damage, diffusion coefficient of salt at complex deterioration conditions like change of temperature, change of humidity, For insulation, we used close-pore type Alumino-Silicate lightweight aggregate and substituted 12 wt% and 15 wt% out of original restorative cement mortar without insulation function. As a result, it was found that original restorative cement mortar without insulation function fail to meet Korean Standard on polymer modified cement mortar for maintenance in concrete structure, but restorative cement mortar with insulation function is in contentment Korean Standard to meet excellent than restorative materials without insulation function for durability at complex deteriorated conditions.

Study on the Sheet-Making of Hanji for the Reproduction of Traditional Gold Thread (금사 제작기술 재현을 위한 한지 초지공정 연구)

  • Park, Mi Seon;Jeong, So Yoon;Jang, Seong Woo;Kim, Hyoung Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.5
    • /
    • pp.88-97
    • /
    • 2014
  • For the purpose of reproduction of traditional gold thread, the artifact investigation was organized for 70 cases (109 pieces) of relics from Korea, China and Japan. In most cases, the main backside material of gold thread from Korea was the bast fibers from paper mulberry. In this study, the optimum sheet-making of Hanji for gold thread reproduction was tried by controlling several process factors of Hanji such as the cooking and beating time of paper mulberry fibers, the number of sheet-making ply, and converting method (Dochim). Tensile index, folding endurance and compressive strength of Hanji showed differences according to the correlation between cooking and beating time, and application of converting method (Dochim), while bending stiffness fell with decrease of thickness. These results can be applied to consider manufacturing factors to make Hanji for the production of gold thread.

Damage evaluation of RC beams strengthened with hybrid fibers

  • Sridhar, Radhika;Prasad, Ravi
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.9-19
    • /
    • 2019
  • This paper describes an experimental investigation on hybrid fiber reinforced concrete (HYFRC) beams. And the main aim of this present paper is to examine the dynamic characteristics and damage evaluation of undamaged and damaged HYFRC beams under free-free constraints. In this experimental work, totally four RC beams were cast and analyzed in order to evaluate the dynamic behavior as well as static load behavior of HYFRCs. Hybrid fiber reinforced concrete beams have been cast by incorporating two different fibers such as steel and polypropylene (PP). Damage of HYFRC beams was obtained by cracking of concrete for one of the beams in each set under four-point bending tests with different percentage variation of damage levels as 50%, 70% and 90% of maximum ultimate load. And the main dynamic characteristics such as damping, fundamental natural frequencies, mode shapes and frequency response function at each and every damage level has been assessed by means of non-destructive technique (NDT) with hammer excitation. The fundamental natural frequency and damping values obtained through dynamic tests for HYFRC beams were compared with control (reference) RC beam at each level of damage which has been acquired through static tests. The static experimental test results emphasize that the HYFRC beam has attained higher ultimate load as compared with control reinforced concrete beam.

Experimental Study on the Flexural Capacity of the U-Flanged Truss Hybrid Beam According to Reinforcement Amounts (인장철근배근량에 따른 U-플랜지 트러스 복합보의 휨 내력에 관한 실험연구)

  • Oh, Myoung Ho;Park, Sung Jin;Kim, Young Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.33-40
    • /
    • 2021
  • For the practical application of U-flanged Truss Hybrid beams, the flexural capacity of hybrid beams with end reinforcement details using vertical steel plates was verified. The bending test of U-flanged Truss Hybrid beams was performed using the same top chord under the compressive force, but with the thickness of the bottom plate and the amount of tensile reinforcement. The initial stiffness and maximum load of the specimen with tensile reinforcement have a higher value than that of the specimen without tension reinforcement, but the more tensile reinforcement, the greater the load decrease after the maximum load. In the case of the specimen with tensile reinforcement, because the test result value is 76% to 88% when compared with the flexural strength according to Korea Design Code, the safety of the U-flanged Truss Hybrid beam with the same details of the specimens can't ensure. Therefore, the development of new details is required to ensure that the bottom steel plate and the tensile reinforcement can undergo sufficient tensile deformation.

The effect of tensile reinforcement on the behavior of CFRP strengthened reinforced concrete beams: An experimental and analytical study

  • Javad Sabzi;M. Reza Esfahani;Togay Ozbakkaloglu;Ahmadreza Ramezani
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.115-132
    • /
    • 2023
  • The present study experimentally and analytically investigates the effect of tensile reinforcement ratio and arrangement on the behavior of FRP strengthened reinforced concrete (RC) beams. The experimental part of the program was comprised of 8 RC beams that were tested under four-point bending. Results have shown that by keeping the total cross-section area of tensile reinforcing bars constant, in specimens with a low reinforcement ratio, increasing the number and decreasing the diameter of bars in the section lead to 21% and 29% increase in the load-carrying capacity of specimens made with normal and high compressive strength, respectively. In specimens with high reinforcement ratio, a different behavior was observed. Furthermore, the accuracy of the existing code provisions and analytical models in predicting the load-carrying capacity of the FRP strengthened beams failed by premature debonding mode were evaluated. Herein, a model is proposed which considers the tensile reinforcement ratio (as opposed to code provisions) to achieve more accurate results for calculating the load carrying capacity of FRP strengthened RC beams.

Studies on the Strength of Briquette Ash Hardened by Cement (연탄재를 시멘트로서 경화(硬化)시켰을 때의 강도(强度)에 관(關)한 연구(硏究))

  • Kim, Seong-Wan
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.1
    • /
    • pp.45-55
    • /
    • 1979
  • This study made to find the variation of strengths of briquette ash which were hardened into cement. The briquette ash were mixed with the cement, ((cement (90%)+slaked lime (10%)) and ((cement (80%)+fly ash (20%)) in the ratio of 1:2, 1:3, 1:4, 1:5, 1:7 and 1:9, respectively, and these were compared with the one made of cement plus standard sand in the strengths of compression, tension and bending at the ages of 7 days and 28 days. The results from the study conducted preliminary without studying the economical aspects or duration of the products are summarized as follows: 1. The compressive strengths of mortar made of 1 to 2 ratios of cement to briquette ash, (cement+slaked lime) to briquette ash and (cement+fly ash) to briquette ash were 84%, 90% and 75% at the age of 7 days and 84.9%, 73.5% and 69.8%, respectively of those of Korean Standard values. 2. The compressive strength s of mortar made of 1 to 2 ratios of cement to briquette ash, (cement+slaked lime) to briquette ash and (cement+fly ash) to briquette ash were 69.3%, 75.1% and 41.3% at the age of 7 days and 56.4%, 49%, and 46.5% at the age of 28 days, respectively of the mortar made of standard sand. 3. The tension strengths of mortar made of 1 to 2 ratios of cement to briquette ash, (cement+slaked lime) to briquette ash, and (cement+fly ash) to briquette ash were 64.4%, 47.1% and 35.4% at the age of 7days and 69.6%, 64.8%, and 57.3%, respectively of that of the mort ar produced with standard sand. 4. The bending strengths of mortar made of 1 to 2 ratios of cement to briquette ash, (cement+slaked lime) to briquette ash, and (cement+fly ash) to briquette ash were 46.3%, 65.9% and 39.1% at the age of 7 days and 89.9%, 96.7%, and 85.1%, respectively of that of mortar produced with standard sand. 5. The bending strength of the mortar was lower than that of cement mortar, when the briquette ash were harqened into cement. However, the mortar produced by such method seemed to be used as the secondary products of cement or concrete. The additional usefullness of the hardened biquette ash can be found in contributing toward the solving the various pollution problems, the saving the labor costs needed to clean-up waste materials, and the saving the construction materials.

  • PDF

A Study on the Lateral Pressure Effect under Axial Compressive Load of Ship Platings (종방향 압축력을 받는 선체판부재의 횡압력 영향에 관한 연구)

  • Park Joo-Shin;Ko Jae-Yong;Lee Jun-Kyo
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.515-522
    • /
    • 2005
  • The ship plating is generally subjected to. combined in-plane load and lateral pressure loads, In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion of the vessel. Lateral pressure is due to. water pressure and cargo. These load components are nat always applied simultaneously, but mare than one can normally exist and interact. Hence, far mare rational and safe design of ship structures, it is af crucial importance to. better understand the interaction relationship af the buckling and ultimate strength far ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except far the impact load due to. slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to. the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

A Study on the Lateral Pressure Effect under Axial Compressive Load of Ship Platings (종방향 압축력을 받는 선체판부재의 횡압력 영향에 관한 연구)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Jun-Kyo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.61-67
    • /
    • 2005
  • The ship plating is generally subjected to combined in-plane load and lateral pressure loads. In-plane loads include axial load and edge shear, which are mainly induced by overall hull ginder bending and torsion of the vessel. Lateral pressure is due to water pressure and cargo. These load components are not always applied simultaneously, but more than one can normally exist and interact. Hence, for more rational and safe design of ship structures, it is of crucial importance to better understand the interaction relationship of the buckling and ultimate strength for ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are inverstigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

  • PDF

Mechanical Properties of Thermally Compressed Domestic Softwoods (국내산 침엽수 열압밀화재의 역학적 특성)

  • Hwang, Sung-Wook;Cho, Beom-Geun;Lee, Won-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.666-674
    • /
    • 2014
  • In this study, we investigated mechanical properties of Korean softwoods after applying thermal compression. Density of compressed woods was notably increased with thermal compression. In case of 50% compression set, density of Korean pine (Pinus koraiensis), Japanese red pine (P. densiflora), and Larch (Larix kaempferi) wood was increased by 71%, 74%, and 76%, respectively, when compared to the control group. The strength of woods was increased and quality of the woods became homogeneous with an increases in the compression set. On the 50% compression set, the compressive strength, bending strength, and hardness of Korean pine wood was increased by 76%, 83%, and 55%, respectively compared to the control group. Longitudinal compressive strengths of Japanese red pine wood increased by 69%, 130%, and 76%, respectively and those of Larch wood increased by 77%, 120%, and 44%, respectively. In thermal compression wood, mechanical properties of Larch wood was the highest, while those of Korean pine wood were the lowest. However, Japanese red pine wood showed the highest in the increase rate of mechanical properties after the thermal compression.

Secondary Buckling Behavior Analysis on the Ship's Plate under Combined Load(Lateral Pressure Load and Axial Compressive Load) (조합하중을 받는 선체판부재의 2차좌굴거동 해석)

  • Park Joo-Shin;Ko Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.1 s.24
    • /
    • pp.67-74
    • /
    • 2006
  • The ship plating is generally subjected to combined in-plane load and lateral pressure loads. In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion rf the vessel. Lateral pressure is due to water pressure and cargo. These load components are not always applied simultaneously, but more than one can normally exist and interact. Hence, for more rational and safe design rf ship structures, it is of crucial importance to better understand the interaction relationship of the buckling and ultimate strength for ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated secondary buckling behavior through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

  • PDF