• 제목/요약/키워드: Bending strain

검색결과 886건 처리시간 0.026초

선박 추진축계 클러치 손상방지를 위한 축계 부재력 평가방법 연구 (A Study on Evaluation Method of Member Forces on the Propulsion Shaft of Ship for Damage Protection of Clutch)

  • 신상훈;최익흥;고대은
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.438-446
    • /
    • 2010
  • The purpose of this study is to establish the proper evaluation method of member forces on the propulsion shaft using strain gages to confirm bearing offset. The strain measurements to find out the bending moments of the shaft have been performed in the yard to be compared with the results of the shaft alignment analysis. The clutch of the propulsion shaft is highly sensitive to shear forces as well as bending moments and the necessity of the measurement of shear forces on the shaft for normal operation of the clutch is recently on the rise. In this study, an evaluation method of the member forces (bending moments and shear forces) of the shaft clutch based on the shaft strain measurement is established. Through the application of this method to the eight $216,000\;m^3$ LNG carriers, the safeties of the clutch systems are evaluated and the better bearing offsets are deduced for the LNG carriers. After adjusting the bearing offsets, all the sea trials of the eight LNG carriers are successfully carried out without any troubles.

Nonlocal strain gradient theory for bending analysis of 2D functionally graded nanobeams

  • Aicha Bessaim;Mohammed Sid Ahmed Houari;Smain Bezzina;Ali Merdji;Ahmed Amine Daikh;Mohamed-Ouejdi Belarbi;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.731-738
    • /
    • 2023
  • This article presents an analytical approach to explore the bending behaviour of of two-dimensional (2D) functionally graded (FG) nanobeams based on a two-variable higher-order shear deformation theory and nonlocal strain gradient theory. The kinematic relations are proposed according to novel trigonometric functions. The material gradation and material properties are varied along the longitudinal and the transversal directions. The equilibrium equations are obtained by using the virtual work principle and solved by applying Navier's technique. A comparative evaluation of results against predictions from literature demonstrates the accuracy of the proposed analytical model. Moreover, a detailed parametric analysis checks for the sensitivity of the bending and stresses response of (2D) FG nanobeams to nonlocal length scale, strain gradient microstructure scale, material distribution and geometry.

Influence of External Reinforcement on Strain Characteristics of Critical Current in BSCCO Superconducting Tapes

  • Shin, Hyung-Seop;Kazumune Katagiri
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권3호
    • /
    • pp.15-19
    • /
    • 2003
  • For the purpose of standardization of the critical current measurement, it is meaningful to describe how $I_{c}$ will behave as the stress/strain level changes. In this study, strain dependencies of the critical current $I_{c}$ in Ag-alloy sheathed multifilamentary Bi(2212) and Bi(2223) superconducting tapes were evaluated at 77K, 0T. The external reinforcement was accomplished by soldering AgMgNi alloy tapes onto single or both sides of the sample. With the external reinforcement to the Bi(2212) tape, the strength of the tapes increased but the critical current at the strain free state, $I_{c0}$ decreased in some cases. The strain for onset of the $I_{c}$ degradation, $\varepsilon$$_{\irr}$, increased with an increase of the reinforcing volume and then saturated to a certain value. The effect of external reinforcement on the degradation of $I_{c}$ due to the bending strain in the Bi(2223) tape was also examined. Contrary to the expectation, it showed a significant $I_{c}$ degradation even at a small strain of 0.4 %. The observations of damage morphologies gave a good explanation to the $I_{c}$ behavior.c/ behavior.r.

박판재의 스프링백 해석(II)-해석모델의 실험적 검증 (Analysis of Springback of Sheet Metal(II): Experimental Validation of Analytical Model)

  • 이재호;김동우;손성만;이문용;문영훈
    • 소성∙가공
    • /
    • 제16권7호
    • /
    • pp.516-520
    • /
    • 2007
  • As the springback of sheet metal during unloading nay cause deviation from a desired shape, accurate prediction of springback is essential for the design of sheet stamping operations. On the removal of the applied load the specimen loses its elastic strain by contracting around the contour of the block, the radius $\rho$ can be determined by the residual differential strain. Therefore in this study the springback estimated by the residual differential strain is experimentally validated through the comparison with those obtained by U-bending test. The springback characteristics of two analytical models are also estimated at various processing conditions such as thickness, curvature of radius and drawing strain. The model based on residual differential strain has an applied transition strain where the springback undergoes a dramatic decrease. Both models show that springback decreases with increased strip thickness and with decreased radius of curvature. For no applied tension, the model based on residual differential strain predicts more springback as compared to the moment based model.

Bending Strain Effect on the Critical Current of Jointed BSCCO Tapes

  • Shin, Hyung-Seop;Dedicatoria, Marlon
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.217-217
    • /
    • 2009
  • In this study, the effect of bending strain on the transport property and critical current of lap and butt-jointed BSCCO tapes have been investigated. The samples were joined using a mechanically controlled jointing procedure. In order to ensure a uniform pressure application at the joint part, a single point contact has been devised and also to achieve a uniform thickness at the joint interface.

  • PDF

고체 평판의 비선형 순수굽힘변형에 대한 수학적 정해 (A Closed Form Nonlinear Solution for Large Pure Bending Deformation of Solid Plate)

  • Youngjoo Kwon
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.220-225
    • /
    • 1998
  • 압축성 초탄성 평판의 순수굽힘에 대한 비선형 변형해석의 수학적 정해가 본 논문에 구해져 있다. 이차원 평면 변형도 상태가 해석을 위하여 가정되었으며, 비선형 순수굽힘 변형해석결과는 고전적인 선형 순수굽힘 변형해석결과와 비교되었다. 고전적인 선형굽힘 결과와는 다르게 비선형 순수굽힘 상태에서는 반경방향응력은 영이 아니며 또한 각방향응력도 선형 상태가 아닌 것으로 규명되었다.

  • PDF

Flexural analysis of steel fibre-reinforced concrete members

  • Chalioris, Constantin E.;Panagiotopoulos, Thomas A.
    • Computers and Concrete
    • /
    • 제22권1호
    • /
    • pp.11-25
    • /
    • 2018
  • A numerical approach for the evaluation of the flexural response of Steel Fibrous Concrete (SFC) cross-sections with arbitrary geometry, with or without conventional steel longitudinal reinforcing bars is proposed. Resisting bending moment versus curvature curves are calculated using verified non-linear constitutive stress-strain relationships for the SFC under compression and tension which include post-peak and post-cracking softening parts. A new compressive stress-strain model for SFC is employed that has been derived from test data of 125 stress-strain curves and 257 strength values providing the overall compressive behaviour of various SFC mixtures. The proposed sectional analysis is verified using existing experimental data of 42 SFC beams, and it predicts the flexural capacity and the curvature ductility of SFC members reasonably well. The developed approach also provides rational and more accurate compressive and tensile stress-strain curves along with bending moment versus curvature curves with regards to the predictions of relevant existing models.

스트레인게이지를 이용한 회전체의 축정렬 연구 (A Study on Shaft Alignment of the Rotating Machinery by using Strain Gages)

  • 나상수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.63-68
    • /
    • 1999
  • Because misaligned shafts have caused noise, vibration, bearing failures, and stress concentration of coupling part, which decrease the efficiency and life of a shaft system, the proper alignment of shaft system should be monitored continuously in dynamic condition. To solve these problems under dynamic condition, a telemetry system is this study is used to find the condition of the least bending moment, which is known by analyzing the structure and stress induced by misalignment is investigated. The moment derived from two shaft strain at the nearby coupling is measured. The bending strain is measured 5 times for average in static state as well as dynamic state with 100~700 rpm.

  • PDF

인장-굽힘모드에서 Bi-2223 초전도 테이프의 임계전류 열화거동 (Degradation Behavior of Critical Current in Bi-2223 Superconducting Tape in Bending-Tension Mixed Mode)

  • 신형섭;김병수;최호연;오상수;하동우;하홍수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.573-576
    • /
    • 2003
  • HTS superconducting tapes are now commercially available for practical applications such as magnets and cables. Since superconductors in such applications are subjected to high mechanical loads that can significantly degrade the superconducting properties, mechanical properties and the strain tolerance known as the strain effect on superconducting properties are needed to be estimated for developing superconducting devices. Influences of loading mode on the Ic degradation and the interaction on strain effect were discussed in this study.

  • PDF

Analysis of static and dynamic characteristics of strain gradient shell structures made of porous nano-crystalline materials

  • Hamad, Luay Badr;Khalaf, Basima Salman;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • 제8권3호
    • /
    • pp.179-196
    • /
    • 2019
  • This paper researches static and dynamic bending behaviors of a crystalline nano-size shell having pores and grains in the framework of strain gradient elasticity. Thus, the nanoshell is made of a multi-phase porous material for which all material properties on dependent on the size of grains. Also, in order to take into account small size effects much accurately, the surface energies related to grains and pores have been considered. In order to take into account all aforementioned factors, a micro-mechanical procedure has been applied for describing material properties of the nanoshell. A numerical trend is implemented to solve the governing equations and derive static and dynamic deflections. It will be proved that the static and dynamic deflections of the crystalline nanoshell rely on pore size, grain size, pore percentage, load location and strain gradient coefficient.